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Abstract— The performance of wireless vehicular 
communications can depend on multiple context factors, such as 
the propagation conditions, the traffic density, or the location of 
communication infrastructure units. This paper proposes and 
evaluates two techniques that are able to identify and quantify 
such dependencies, and uses them to estimate the vehicular 
communications performance exploiting context information. 
The techniques proposed have been evaluated using real-world 
traces from a Vehicle to Infrastructure (V2I) IEEE 802.11p 
measurement campaign. The obtained results show that the 
number of context factors considered in the estimation process 
can influence its accuracy, and that not all context factors have 
the same importance in the estimation process. 

Keywords— Vehicular communications, Intelligent 
Transportation Systems, context-awareness, communications 
performance estimation. 

I. INTRODUCTION 
Wireless vehicular networks are expected to improve traffic 

safety and efficiency. To do so, vehicular communications 
need to be carefully designed and estimated to guarantee 
maximum reliability, efficiency and scalability. Vehicular 
communications can be notably influenced by multiple context 
factors [1][2] such as weather conditions, propagation 
environment, vehicular speed, road topology, traffic density, 
presence of obstacles, location of communication units, or 
communications conditions (e.g. channel load, spectrum 
available, etc.), etc. For example, NLOS (Non Line-Of-Sight) 
propagation conditions resulting from the presence of obstacles 
can drastically reduce the communications range [3], while the 
local traffic density influences vehicular multi-hop 
communications [4]. 

Context information has been exploited in different areas, 
in particular in pervasive computing where applications are 
designed to discover and exploit context information. In the 
wireless and mobile networking domain, previous studies have 
proposed to exploit context information to improve 
communications performance and efficiency, for example, 
through the selection and configuration of protocols. The study 
reported in [5] presents a framework for the integration of 
context information into heterogeneous access and handover 
management. The study reported in [6] proposes exploiting 
context information provided by the cellular network to 
improve the forwarding process in multi-hop cellular networks. 

In addition to communications and networking context 
information, vehicular systems can exploit advanced context 
data obtained from positioning devices, digital maps, on-board 
sensors and even neighboring vehicles. For example, [7] uses 
information retrieved from digital road maps to improve multi-
hop routing protocols. The authors proposed in [8] to use 
traffic context information to improve the multi-channel 
management for single-radio transceivers based on the IEEE 
WAVE/1609 protocol stack. In [9], the authors propose to 
control the amount of information transmitted wirelessly using 
context-based prioritization and re-scheduling techniques that 
take into account vehicular application requirements. 

Previous studies have demonstrated the impact of context 
conditions on vehicular communications. Techniques to 
identify and quantify such dependency would hence be very 
useful to design mechanisms capable to estimate the 
performance of vehicular communications. The availability of 
such estimates could help configure and optimize vehicular 
communications and protocols, thereby improving their 
reliability and efficiency. Based on this idea, this paper 
proposes and evaluates two techniques for exploiting context 
information to estimate the performance of vehicular 
communications. The proposed techniques are able to deal with 
the uncertainty related to the estimation process, which is 
especially relevant in the case of wireless communications. An 
accurate definition and modeling of the context conditions 
could require a high number of context factors. Extracting such 
context factors can have a cost in terms of equipment resources 
needed, computing power for a real-time processing, and 
possibly communications overhead for their acquisition and 
sharing with neighboring vehicles. This study also analyzes the 
impact of the number of considered context factors on the 
accuracy of the communications performance estimation, and 
investigates the relevance of different context factors for such 
estimation. The relevance is here defined as the degree of 
influence of the context factor on the accuracy of the 
communications performance estimation. Therefore, this study 
also contributes to the identification of the most relevant 
context factors that should be taken into account in future 
studies. 

This paper is structured as follows. Section II reviews 
techniques traditionally used for reasoning under uncertainty, 
and that can be useful for our communications performance 
estimation objective. Based on the conducted review, the two 

2013 IEEE Vehicular Networking Conference

978-1-4799-2687-9/13/$31.00 ©2013 IEEE 39



techniques that seem more appropriate for our objective are 
selected: artificial neural networks and Bayesian networks. 
Section III presents the specific context factors and 
communications performance metrics considered in this study. 
The selection is based on the availability of empirical 
communication traces. However, it is important noting that the 
proposed techniques are not restricted to the selected factors 
and metrics. Section IV and Section V present the design and 
implementation of the artificial neural network and Bayesian 
network here proposed. Section VI evaluates the performance 
of these two techniques using empirical IEEE 802.11p V2I 
communication traces obtained in an urban measurement 
campaign. This section also includes the analysis of the impact 
of the number of context factors on the estimation process, and 
of the relevance of different context factors.  

II. ESTIMATION UNDER UNCERTAINTY 
To estimate communications performance metrics (e.g. 

communications range) based on context factors (e.g. traffic 
density, number of lanes, presence of obstacles), this section 
reviews techniques traditionally used for reasoning under 
uncertainty. A technique used to estimate the performance of 
vehicular communications requires good scalability properties 
to be able to handle a potentially large set of context factors 
and performance metrics. Additionally, the technique needs to 
be able to deal with the uncertainty that can characterize 
wireless communications and vehicular environments. Some of 
the existing techniques that can be used for reasoning with 
uncertain information are fuzzy logic, probabilistic logic, 
Bayesian networks, artificial neural networks, decision trees or 
Dempster-Shafer theory. Their main characteristics and 
suitability for this study are discussed next.  

Fuzzy logic measures the degree to which some event 
occurs or some conditions exist [10] and is well suited for 
describing subjective context conditions (congested or non-
congested, low/medium/high, etc.). In the transportation area, 
fuzzy logic has been used, for example, to identify traffic 
congestion conditions since no clear boundaries exist between 
types of traffic flow [11], or to detect traffic incidents in a 
highway [12]. Fuzzy logic could be exploited in our study to 
quantify certain context conditions that are not clearly 
measurable or do not have clear boundaries. However, fuzzy 
logic itself does not provide the means for reliably estimating 
the communications performance using context information. 

Probabilistic logic is based on the concept of probability 
and can hence associate logical assertions with a probability. 
Probabilistic logic allows writing rules that reason about 
events’ probabilities. As an example, [13] uses probabilistic 
logic for an autonomous robot to identify its environment using 
isolated features detected from images. The application of 
individual probabilistic rules would not allow modeling the 
interaction and dependencies among different context factors 
that are necessary in our study. As a result, probabilistic logic 
is not suitable to estimate the communications performance 
using different performance metrics and context factors. 

Bayesian Networks (BNs) represent a natural extension of 
basic probabilistic logic, and are probably one of the most 
popular formal approaches for reasoning under uncertainty. 

BNs are directed acyclic graphs, where the nodes are random 
variables and the arcs between nodes represent causal 
relationships or dependencies. The main property of BNs is 
that the joint distribution of a set of variables can be written as 
the product of the local distributions of the corresponding 
nodes and their parents [14]. The parents of a variable are the 
variables with an arch directed to it. The flexibility of BNs for 
presenting probabilistic dependencies, and the efficiency of 
existing algorithms to perform inference make BNs a powerful 
tool for solving problems involving uncertainty. In general, 
modeling BNs requires first designing the network, which 
includes the selection of significant variables and the 
identification of the network structure. A learning process is 
then required to adjust the conditional probabilities of the BN. 
Learning capabilities are very interesting in our scenario to 
continuously refine the performance estimation process as new 
context information is acquired. Once the BN is designed and 
the conditional probabilities have been adjusted through the 
learning process, probabilistic inference algorithms are used to 
compute the probability distribution for any variable given 
observations of other variables. The variables of a BN that 
model our problem would be the context factors and 
communication performance metrics. BNs could be used in our 
study to calculate the probability distribution of e.g. the 
transmission range (a performance metric) given existing 
context conditions (defined by a set of context factors). In 
addition, inferences can be performed even when not all 
variables can be observed or data is missing. This can be useful 
in scenarios where all context factors cannot always be 
measured, but still a decision needs to be made. 

An Artificial Neural Network (ANN) is a structure 
comprised of densely interconnected adaptive simple 
processing elements (called artificial neurons or nodes). The 
output of each artificial neuron is a function (linear, sigmoid, 
threshold, step, Gaussian, etc.) of its weighted inputs, known as 
activation function. The attractiveness of ANNs comes from 
their remarkable information processing characteristics, mainly 
in terms of nonlinearity, high parallelism, and learning and 
generalization capabilities [15]. ANNs have been used to solve 
problems related to pattern classification, clustering, function 
approximation (estimate the output of an unknown function 
based on observed inputs), or optimization [16]. One of the 
most popular and powerful network architectures for function 
approximation is the so called feed forward network, or multi-
layer perceptron, which is formed by an input layer, an 
arbitrary number of hidden layers, and an output layer. In 
multilayer perceptron networks, each node of a layer has a 
direct connection to all nodes of the following layer. With 
ANN, the goal of the training process is to find the weight 
value of each connection that will cause the output from the 
neural network to match the actual target values as closely as 
possible. Once the network is trained, the information is 
presented (or fed) to the neurons of the input layer and 
propagated to the next layers, until the information is converted 
into the network output at the last layer. ANNs can be 
exploited in our study to estimate the vehicular 
communications performance (considering various 
performance metrics) using observed context conditions. In 
this setting, the input nodes of the ANN could correspond to 
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the context factors measured/observed, and the output nodes 
would represent the communications performance metrics. 

Decision trees (also known as hierarchical classifiers) are 
one of the most popular classification algorithms. A decision 
tree is characterized by an ordered set of nodes, where each 
node is associated with a decision function of one or more 
features. Decision trees can be used for regression analysis to 
estimate the value of an output function based on a set of input 
values. ANNs are often compared to decision trees because 
both techniques can model data that has nonlinear relationships 
between variables, and both can handle interactions between 
variables. The main advantage of decision trees compared to 
ANNs is that decision trees better handle binary categorical 
inputs. However, only discrete/categorical output values are 
admitted in the case of decision trees, whereas ANNs have the 
capability of providing output values for input values for which 
they were not specifically trained (i.e. generalization). 

The Dempster-Shafer theory is a mathematical theory 
widely used due to its ability to differentiate between 
uncertainty and ignorance, and its ability to merging multiple 
pieces of information (i.e. sensor fusion) [17]. The Dempster-
Shafer theory would be interesting in our study as a technique 
to evaluate if sufficient context information has been acquired 
so that a decision can be performed. However, it does not 
represent a plausible solution for estimating the 
communications performance since it is not suitable to 
represent the existing dependencies among context factors and 
performance metrics. 

ANNs and BNs have been selected in this study to estimate 
the communications performance using context information. 
Both techniques are able to express the non-linear relationship 
that can exist between varied context factors and performance 
metrics. In addition, they both can learn the dependencies 
between context factors and performance metrics through their 
respective training processes. ANNs have been selected over 
decision trees given their limitation to generalize and their 
discrete output nature. Fuzzy logic, probabilistic logic and 
Dempster-Shafer theory cannot be used for the purpose of this 
study since they do not have learning capabilities and cannot 
reflect multiple dependencies among context factors and 
performance metrics. ANNs and BNs have different 
advantages and disadvantages. ANNs present higher scalability 
in terms of number of nodes. However, ANNs calculate the 
output values that best match with the training data with which 
they have been trained. This implies that for a given context 
scenario the output of an ANN is fixed. In BNs, the output is 
not a specific value (in our case, the estimation of 
communications performance metrics), but rather its 
probability distribution for a given context scenario. 
Additionally, ANNs require that all the input nodes are used to 
calculate the output values. This would limit their use in 
scenarios in which the vehicle has only partial knowledge of 
the context conditions.  

III. CONTEXT FACTORS AND PERFORMANCE METRICS 
The selected estimation techniques are tested in this paper 

using a large set of empirical data obtained in an urban IEEE 
802.11p V2I measurement campaign [3]. As a result, this study 

is restricted, without any loss of generality, to the context 
factors and communications performance metrics that can be 
extracted from the available set of data. The measurement 
campaign was aimed at analyzing the impact of urban 
characteristics, RSU (Road Side Unit) deployment conditions, 
and communication settings on the quality of IEEE 802.11p 
V2I communications. The campaign included 22 different RSU 
locations carefully selected to study the impact of various 
operating and propagation conditions on V2I communications. 
Seventy different RSU deployment configurations 
(combination of RSU location, transmission power, antenna 
height and type of mast) were analyzed during the campaign. 
For each configuration, the vehicle performed multiple test 
drives to/from the RSU to provide valuable indications on the 
quality of V2I communications. More than 700 test drives were 
conducted in total, with around 950km of testing distance 
traveled during more than 35 hours of wireless measurement 
tests being recorded. The complete set of empirical data can be 
obtained by interested readers from 
http://www.uwicore.umh.es/V2I-measurement-campaign/. 

A. Context factors 
The context factors considered in this study are presented in 

Table I. These six context factors have been extracted for all 
the conducted test drives.  

Table I CONTEXT FACTORS. 

Context 
factor 

Possible 
values Description 

Buildings  
No, same, 
opposite, 
both 

Represents the relative position of surrounding 
buildings to the RSU (No buildings, buildings on 
the same/opposite side of the street as/to the 
RSU, or buildings in both sides of the street). 

Number of 
lanes [Integer] Total number of lanes of the street considering 

both driving directions. 

Traffic 
density 

Low, 
medium, 
high 

Approximate traffic density observed in the 
vehicle driving direction. 

Trees 
No, same, 
opposite, 
both 

This variable represents the presence of trees 
relative to the RSU (No trees, trees on the 
same/opposite side of the street as/to the RSU, 
or trees in both sides of the street). Trees in a 
median are considered in an additional variable. 

Median Yes, no 
Indicates the presence of a median with trees 
obstructing the view between the vehicle and the 
RSU. 

Distance to 
NLOS 
conditions 

[Float] 
Distance between the RSU and the location 
where the vehicle losses visibility with the RSU 
due to buildings. 

 

A more detailed analysis of the context factors could be 
performed (e.g. to reflect the percentage of street occupied with 
buildings or trees instead of simply reflecting their presence), 
but their current definition already allows demonstrating the 
potential of ANN and BN to estimate the communications 
performance using context information. In a practical 
deployment, static context factors such as Buildings or Number 
of lanes could be extracted from digital maps. The local traffic 

2013 IEEE Vehicular Networking Conference

41



density could be estimated through the periodic exchange of 
beacons among nearby vehicles.  

B. Communications performance metrics 
The communications performance metrics measured during 

the test drives and used in this study are: 

• Reliable Connectivity Range (RCR): distance to the 
RSU up to which the experienced PDR (Packet 
Delivery Ratio) is above 0.7. The RCR represents then 
the range over which high quality V2I communications 
can be established. 

• Unreliable Connectivity Range (UCR): distance to the 
RSU from which the experienced PDR is below 0.1, 
and only very sporadic and low quality V2I 
transmissions can take place.  

• Packets Per Test drive (PPT): number of packets 
correctly received during a single test drive to/from the 
RSU. It represents the volume of information that could 
be downloaded from the RSU during a single test drive.  

Fig. 1 illustrates an example of the PDR measured under 
two different context scenarios, and how the RCR and UCR 
metrics are obtained. This figure compares the V2I 
performance with and without the presence of a median with 
trees obstructing the visibility between the vehicle and the 
RSU. The figure was obtained considering a transmission 
power of Pt=20dBm, a packet transmission frequency of 
Tf=10Hz and an RSU height of h=6.5m. The specific context 
conditions of these test drives were: Buildings = both, Number 
of lanes = 6, Traffic density = medium, Trees = no (trees in the 
median are not taken into account in this variable), Median = 
yes/no and distance to NLOS = 395m. 
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Fig. 1. Effect of a median with trees on the PDR (Packet Delivery Ratio) as a 
function of the distance of the vehicle to the RSU (h=6.5m, Pt=20dBm). 

IV. ANN DESIGN AND TRAINING 
The first step to build an ANN is the identification of the 

relevant variables. While the input nodes will be represented 
by the context factors detailed in Table I, the output nodes will 
be the communications performance metrics that need to be 
estimated. Based on the identified nodes, we propose the use of 
a feed forward network with a single hidden layer, given its 

potential to approximate any set of functions if the activation 
functions are continuous [18]. There is no specific technique to 
select the activation function to be used by the hidden nodes of 
an ANN, but in general, non-linear activation functions are 
preferred to enable the representation of non-linear 
relationships between inputs and outputs of the ANN. Given its 
potential demonstrated in related studies, the Sigmoid function 
has been selected in this study to implement the hidden nodes 
of the ANN. The criteria shown in [16] has been here followed 
to select the activation functions of the output nodes, and linear 
functions have been selected. Fig. 2 illustrates the structure of 
the ANN here proposed to estimate the communications 
performance based on the the considered context factors. 

 
Fig. 2. ANN proposal. 

To build, train and evaluate ANNs, this study has used the 
Matlab library for ANNs. This library has been used to build a 
feed forward neural network with one hidden layer, 6 input 
nodes (context factors) and 3 output nodes (communications 
performance metrics). The number of hidden nodes in the 
hidden layer has been set to 10. While a lower number of 
hidden nodes decreased the accuracy of the obtained results, a 
higher number did not significantly improve the accuracy but 
increased the computational requirements. While the transfer 
function of the hidden nodes has been fixed to a Sigmoid 
(tanh), the output nodes present a linear transfer function. 
TRAINLM is the back-propagation network training function 
employed for ANN training. It updates weights and bias states 
according to Levenberg-Marquardt optimization [19]. This 
algorithm is one of the fastest methods for training moderate-
sized feed forward neural networks.  

V. BN DESIGN AND TRAINING 
To design a BN, the relevant variables need to be identified 

first. These variables are again the context factors and 
communications performance metrics. Once the variables have 
been identified, the structure or topology of the BN needs to be 
defined. The approach here proposed considers a BN structure 
in which all variables that can be observed are parents of all 
variables that need to be estimated. In our study, this 
corresponds to the BN illustrated in Fig. 3. This structure 
assumes that all context factors influence all the 
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communications performance metrics. One of the advantages 
of using this structure is that it has only one undirected path 
between any two nodes, known as polytree, and therefore can 
be inferred in polynomial time.  

 
Fig. 3. BN proposal. 

To build, train and use BNs, this investigation has used the 
Bayes Net Toolbox (BNT). BNT is an open-source Matlab 
package for directed graphical models such as Bayesian 
Networks. BNT supports different kinds of nodes (probability 
distributions), exact and approximate inference, parameter and 
structure learning, and static and dynamic models. BNT is 
widely used in teaching and research, and is freely available at 
https://code.google.com/p/bnt/. The BN built has 9 nodes. The 
first six nodes represent the context factors (Table I) and will 
be used as observed nodes. The last three nodes represent the 
communications performance metrics previously defined. The 
BN built considers Buildings, Number of lanes, Traffic density, 
Trees and Median as discrete/categorical nodes, and the rest of 
nodes as continuous nodes with Gaussian distributions (the 
most popular implemented training and inference algorithms 
are designed for this type of random distribution).  

The algorithm employed for training the implemented BN 
is the EM (Expected Maximization) algorithm, which finds the 
maximum likelihood parameters of the different nodes for a 
fully observed model. In our case, it will find the discrete 
probability distribution of the discrete nodes, and the median 
and standard deviation parameters of the continuous nodes.  
Once the network is trained, we can enter an observation in a 
given set of variables and calculate the probability distribution 
of other variables. This is clearly one of the key advantages of 
BNs with respect to ANNs, since ANNs simply provide the 
‘best’ value of the output variables, but do not provide 
information about their statistical distribution. In our study, the 
context factors observed are introduced, and the probability 
distribution of the performance metrics is calculated.  

VI. PERFORMANCE EVALUATION 
As previously mentioned, the ANN and BN solutions 

proposed in this study are here evaluated using the empirical 
data set obtained from the IEEE 802.11p V2I measurement 
campaign reported in [3]. Both ANN and BN have been trained 
with this data set obtained with a transmission power of 
Pt=20dBm and an RSU height of h=6.5m. Once the networks 
were built and trained, they have been used to estimate the 
RCR (Reliable Connectivity Range), UCR (Unreliable 
Connectivity Range) and PPT (Packets Per Test drive) metrics 
using as input the context factors reported in Table I and 
derived from the data set.  

A. ANN and BN comparison 
The estimations obtained with the ANN and the BN 

proposals have been compared with the actual measurements, 
and the relative error has been calculated as RE=100·(E-A)/A, 
where E represents the estimated value and A the actual one. 
Fig. 4 shows the CDF (Cumulative Distribution Function) of 
the relative error RE obtained using the constructed ANN. The 
figure shows that 60% of the UCR estimations resulted in 
relative errors between -12.4% and 21.7%, which correspond 
to the 20th and 80th percentiles, respectively. This result means 
that if the estimated UCR value is e.g. 1000m, the actual one is 
between 876m and 1217m with 60% probability. The interval 
between the 20th and 80th percentiles of the relative error of 
the performance metrics will be used as a metric to evaluate the 
estimation process, and will be referred to as IRE60.  Fig. 5 
compares the performance obtained with ANN and BN using 
IRE60 for the three performance metrics. The depicted results 
show that the higher accuracy with ANN is obtained for the 
UCR metric, which could indicate that the selected context 
factors better represent this metric than RCR and PPT. The 
highest error is observed when estimating the PPT metric. This 
could be the case because the evaluated context factors do not 
adequately represent this metric. In fact, the PPT metric 
notably depends on the presence of traffic lights in the path 
towards the RSU, because if the vehicle stops in a traffic light 
close to the RSU, the number of packets correctly received 
notably increases. As a result, to reduce the error in the 
estimation of the PPT, additional context factors such as the 
presence of traffic lights could be considered. In addition, more 
detailed context information could be acquired (tree densities, 
building heights, etc.) to reduce in general the estimation error. 
Fig. 5 also depicts the IRE60 values obtained with the BN 
proposal. Since the output of the BN is the probability 
distribution of each performance metric, the IRE60 metric was 
obtained with the estimated value E, equal to the mean of the 
output distribution; other approaches would also be valid (e.g. 
the median, a given percentile, etc.). Fig. 5 shows that the 
relative errors obtained with the BN are lower than the ones 
obtained with the ANN.  
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Fig. 4. CDF (Cumulative Distribution Function) of the relative error RE 
obtained with an ANN. 

2013 IEEE Vehicular Networking Conference

43



 
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80

RCR

UCR

PPT

IRE60 [%]

 

 

BN
ANN

 
Fig. 5. Comparison of IRE60 values obtained with ANN and BN for the 
three performance metrics: RCR (Reliable Connectivity Range), UCR 
(Unreliable Connectivity Range) and PPT (Packets Per Test drive). 

B. Bounds of performance estimation with the BN proposal 
The variability of the radio channel results in that the 

communications performance metrics measured can differ 
between consecutive test drives, i.e. different RCR, UCR and 
PPT values can be obtained under similar context conditions. 
To illustrate this trend, the bars in Fig. 6 represent the PDF 
(Probability Density Function) of RCR values measured during 
the drive tests under similar context conditions. Given this 
variability, estimating the lower and/or upper performance 
bounds is of higher interest than estimating e.g. their average 
value. The proposed BN can be used to estimate such 
performance bounds since it provides the probability 
distribution of the performance metrics. Fig. 6 also depicts the 
PDF of the RCR metric estimated with the BN (a Gaussian 
curve with certain mean and variance)1. The PDF estimated 
with the BN can be used to estimate the lower and upper 
bounds of the RCR metric, e.g. the 10th and 90th percentiles, 
and thereby the interval where to expect the RCR value under 
certain context conditions. Such interval is highlighted in the 
figure with a double arrow. 

To evaluate the capability of the BN proposal to estimate 
the metrics’ performance bounds, the context factors are used 
as inputs for each test drive. The estimation process is 
considered successful if the actual performance metric 
measured in a test drive is above the estimated lower 
performance bound for the context conditions under which the 
test drive was performed. Table II shows the percentage of 
successful estimations obtained for the different metrics and 
using the proposed BN. The results in Table II are shown for 
different percentiles used to obtain the lower performance 
bound and decide whether an estimation is successful or not. 
The depicted results show that the percentage of successful 
estimations increases with lower percentiles. 

 

                                                           
1  Under ideal training and building processes, the PDF estimated should 
match with the measurements. However, in real environments, the 
communications performance metrics do not necessarily follow a Gaussian 
probability distribution, and a finite number of measurements can negatively 
affect the matching. 
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Fig. 6. Example of PDF (Probability Density function) of the RCR (Reliable 
Connectivity Range) metric for similar context conditions. 

To provide an idea of the dispersion of the probability 
distributions obtained with the BN, Table III shows the average 
ratio between the interval estimated with the BN and the actual 
measured metrics. This ratio can be seen as a measure of the 
variability of the metrics when estimated using the BN. As it 
can be observed, a more precise estimation of the interval is 
obtained for the RCR and UCR metrics. However, the higher 
variability of the PPT metric results in much larger intervals. 
The accuracy of the obtained estimations could be improved 
with a higher number of samples/measurements. 

Table II PERCENTAGE OF SUCCESSFUL ESTIMATIONS. 

 Percentile used for the low performance bound 

Metric 5th  10th  20th  

RCR  67.8% 65.5% 62.7% 

UCR 68.9% 66.7% 62.7% 

PPT 69.5% 63.8% 58.8% 

 

Table III   AVERAGE RATIO BETWEEN THE INTERVAL LENGTH AND THE 
ACTUAL METRICS MEASURED. 

 Percentiles used to construct the interval 

Metric 5th - 95th  10th - 90th  20th - 80th  

RCR  0.22 0.17 0.11 

UCR 0.14 0.11 0.07 

PPT 0.98 0.77 0.50 

C. Impact of the number of context factors on the estimation 
This section analyses the impact of the number of context 

factors on the estimation of the communications performance 
metrics. The results shown in sections VI.A and VI.B were 
obtained using all the context factors defined as inputs. In this 
section, we analyze how reducing the number of context 
factors influences the accuracy of the obtained estimations. 
Table IV presents the five context factor sets (CFS) used in this 
analysis. While CFS1 only includes two context factors, CFS5 
includes all the six context factors previously described. Fig. 7 
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shows the IRE60 metric obtained when considering the 
proposed BN and the different CFSs reported in Table IV. The 
depicted results show that increasing the number of context 
factors used in the estimation process can considerably reduce 
the estimation’s relative error, although it can also increase 
acquisition and processing costs. Similar trends have been 
obtained with the ANN proposal, but are omitted due to space 
limitations.  

Table IV    CONTEXT FACTOR SETS. 

Context 
factor set 

Context factors included in the communications 
performance estimation 

CFS1 Buildings, Number of lanes 

CFS2 Buildings, Number of lanes, Traffic density 

CFS3 Buildings, Number of lanes, Traffic density, Trees 

CFS4 Buildings, Number of lanes, Traffic density, Trees, Median 

CFS5 Buildings, Number of lanes, Traffic density, Trees, Median, 
Distance to NLOS conditions 
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Fig. 7. IRE60 metric as a function of the context factor set for the BN 
proposal. The estimations are obtained considering the mean of the output 
distribution of the three performance metrics: RCR (Reliable Connectivity 
Range), UCR (Unreliable Connectivity Range) and PPT (Packets Per Test 
drive). 

The influence of the number of context factors on the 
performance estimation process can also be analyzed taking 
into account the definition of successful estimation previously 
proposed. Fig. 8 shows the percentage of successful 
estimations obtained for RCR, UCR and PPT when varying the 
number of context factors. As it can be observed, this 
percentage increases as the number of context factors increases 
for RCR and UCR, which again demonstrates the benefit that 
increasing the number of context factors could provide if the 
associated acquisition and processing costs can be tolerated. 
For the PPT metric, increasing the number of context factors is 
reflected in a more precise estimation of the interval where to 
expect the metric, and therefore decreases the ratio between the 
interval estimated and the actual measurement (see Fig. 9c).  
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 (a) RCR (b) UCR (c) PPT 

Fig. 8. Percentage of successful estimations with the BN proposal, and 
considering the 20th percentile of the output distribution as the lower bound of 
the interval for the three performance metrics: RCR (Reliable Connectivity 
Range), UCR (Unreliable Connectivity Range) and PPT (Packets Per Test 
drive)  

1 2 3 4 5
0

0.05

0.1

0.15

0.2

Context factor set

A
ve

ra
ge

 r
at

io
 in

te
rv

al
/o

bj
ec

tiv
e

1 2 3 4 5
0

0.05

0.1

0.15

0.2

Context factor set
A

ve
ra

ge
 r

at
io

 in
te

rv
al

/o
bj

ec
tiv

e
1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Context factor set

A
ve

ra
ge

 r
at

io
 in

te
rv

al
/o

bj
ec

tiv
e

 
 (a) RCR (b) UCR (c) PPT 

Fig. 9. Average ratio between the interval length estimated and the actual 
measurements while while varying the number of context factors for the three 
performance metrics: RCR (Reliable Connectivity Range), UCR (Unreliable 
Connectivity Range) and PPT (Packets Per Test drive). Percentiles used to 
construct the interval: 20th – 80th.  

D. Quantifying the relevance of context factors 
The previous section has shown that increasing the number 

of context factors can positively influence the estimation 
process. However, not all context factors might be equally 
relevant for the estimation process. If this is the case, irrelevant 
context factors should be excluded from the learning and 
estimation processes to avoid wasting communication and 
processing resources. To date, there is not a widely adopted 
method to calculate the relevance of a context factor. A factor 
is here considered more relevant than other factors if it has a 
higher influence on the accuracy of the communications 
performance estimation. 

The previous analysis has been extended to analyze the 
relevance of each of the six context factors considered in this 
study. Fig. 10 compares, for the RCR metric, the relative error 
IRE60 obtained with CFS5 (vertical black lines and double 
arrows) to that obtained when removing from CFS5 one of the 
context factors analyzed (the removed context factor is 
indicated in the y-axis). The depicted results show that poorer 
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IRE60 metrics are obtained when removing from CFS5 the 
Trees or Median context factors. On the other hand, removing 
the Number of lanes context factor from CFS5 does not 
significantly increase the IRE60 metric compared to CFS5. 
These results thereby demonstrate the varying effect of 
different context factors on the estimation process, and the 
importance of correctly identifying the more relevant ones. Fig. 
10 also shows that the relevance of a context factor can be 
different for different metrics. For example, Dist. NLOS is one 
of the most relevant context factors for estimating the PPT 
metric, which was not the case for the two other metrics.  
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Fig. 10. IRE60 for the RCR (Reliable Connectivity Range), UCR (Unreliable 
Connectivity Range) and PPT (Packets Per Test drive) metrics when using the 
BN proposal. The estimations use the mean of the output distribution, and 
consider only five context factors. The vertical lines and double arrows 
represent the IRE60 metric obtained with CFS5. 

VII. CONCLUSIONS 
This paper has proposed and evaluated the use of artificial 

neural networks and Bayesian networks to estimate the 
performance of vehicular communications using context 
information. Both techniques have learning capabilities and 
provide sufficient flexibility for considering multiple 
communications performance metrics and context factors. The 
obtained results show that the BN proposal outperforms the 
AN one in terms of the estimates’ accuracy. In addition, BNs 
provide relevant statistical information about the 
communications performance estimates. The probability 
distribution of the estimated metrics can be used to derive the 
estimation performance bounds under certain context 
conditions. The study here reported has also demonstrated the 
impact of the number of used context factors on the accuracy 
of the performance estimates, and the varying relevance of 
context factors for different performance metrics. This 

relevance analysis could be useful to identify which type of 
data needs to be stored and which factors should be evaluated 
in future studies. 
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