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Abstract Cooperative perception (a.k.a. collective perception or cooperative sensing) will allow Connected 
and Automated Vehicles (CAVs) to share information about detected objects. Cooperative perception 
improves the sensing accuracy, confidence and range of CAVs, and extends their perception of the driving 
environment. First message generation rules based on the mobility and dynamics of detected objects have 
been proposed to decide when a cooperative perception message should be generated and what information 
it should include. Studies have shown that this type of generation rules can compromise the scalability of 
cooperative perception and vehicular networks, as they tend to transmit significant amounts of redundant 
information and generate small and frequent cooperative perception messages that increase the 
communications overhead. To combat these inefficiencies, this paper proposes and evaluates three techniques 
that combine, for the first time, baseline mobility-based generation rules for cooperative perception messages 
with mechanisms to control the redundancy and organize the information about detected objects in order to 
avoid the frequent transmission of small messages. This study demonstrates that the proposed techniques 
improve the perception of CAVs and reduce the information age. In addition, the techniques reduce the 
channel load and improve the scalability of cooperative perception services and vehicular networks. The 
study demonstrates that the most effective technique is based on: (1) first applying the generation rules to 
decide whether a cooperative perception message should be generated, (2) then applying redundancy control, 
and finally (3) organizing the information about all detected objects to avoid small and frequent messages. 

Keywords Cooperative perception, collective perception, cooperative sensing, CPS, CPM, connected 
automated vehicles, autonomous vehicles, CAV, RSU, V2X, vehicular networks, congestion control, 
redundancy mitigation, C-ITS, DCC, ETSI.

I. Introduction 
 

Connected and Automated Vehicles (CAVs) will use 
V2X (Vehicle-to-Everything) communications to 
complement the capabilities of their onboard sensors and 
improve their safety and driving [1-3]. The sensing 
technology has significantly improved over the last years [4], 
but the capabilities of onboard sensors like cameras, radars 
or lidars are still limited under the presence of obstacles or 
adverse weather conditions, among other factors [5][6]. V2X 
communications can help overcome these limitations 
through the exchange of sensor information among CAVs. 
By sharing this information, CAVs can extend their field of 
view beyond that of their own onboard sensors’ as well as 
improve the sensors’ detection accuracy. The process of 
exchanging sensor information is generally referred to as 
cooperative perception, collective perception or cooperative 
sensing [7][8]. 

ETSI (European Telecommunications Standards 
Institute) and SAE (Society of Automotive Engineers) are 
currently working to define new V2X standards for 
cooperative perception. SAE has not yet published its 

standard for cooperative perception [7]. On the other hand, 
ETSI published a Technical Report on collective perception 
in December 2019 [8], and is currently working on the 
corresponding Technical Specification [9]. In [8], ETSI 
defined the so-called Collective Perception Service (CPS). 
The CPS includes the Collective Perception Message (CPM) 
format and the generation rules to decide when a new CPM 
should be generated and what information it should include. 
The core of the CPM generation rules included in ETSI’s 
Technical Report was initially proposed in [10], and is based 
on the exchange of information about detected objects. These 
rules when a CAV should include an object it has detected 
with its onboard sensors in a CPM. The decision is based on 
the mobility of the detected object (e.g., its position and 
speed). These ETSI CPM generation rules are referred to as 
baseline generation rules in this paper. Several studies have 
revealed that current CPM generation rules present certain 
inefficiencies that can overload the communications channel 
and limit their scalability [11]. The first inefficiency is 
related to the fact that the current CPM generation rules can 
generate a high number of CPMs with a small payload. This 
is the case because the CPM headers and the protocol headers 
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can be significantly large. Therefore, when the payload is 
small, most of the bandwidth is used to transmit overhead 
data. The second inefficiency is the transmission of 
redundant information. This occurs when multiple CAVs 
detect the same object simultaneously and include its 
information on their CPMs. The transmission and reception 
of redundant information about the same object can 
unnecessarily overload the communications channel and 
increase the computing power needed to process the 
exchanged sensor information. The authors have addressed 
these two inefficiencies separately in [12] and [13]. In [12], 
the authors proposed the so-called Look-Ahead technique 
that groups objects into larger CPMs and reduces the number 
of CPMs generated with a small payload. In [13], the authors 
proposed a redundancy mitigation technique that controls the 
amount of redundant information by reducing the number of 
vehicles that simultaneously report about the same detected 
object. Both solutions are compatible and extend the CPM 
generation rules initially proposed in [10]. They can provide 
significant benefits in terms of perception and channel load. 
In fact, Look-Ahead and redundancy mitigation are now part 
of ETSI specifications [8][9]. These techniques have been so 
far designed and evaluated independently. Combining them 
could potentially lead to additional gains because both 
techniques address different inefficiencies in the baseline 
generation rules. However, their combination has not been 
studied yet, and must be carefully designed since both 
techniques may have opposite effects on the generation of 
cooperative perception messages. For example, Look-Ahead 
generates larger CPMs by grouping objects into a smaller 
number of CPMs, but it can increase the amount of 
redundancy because objects can be transmitted more 
frequently than with the baseline CPM generation rules [12]. 
On the other hand, redundancy mitigation techniques reduce 
the amount of redundancy transmitted, but they may also 
increase the generation of small CPMs [13]. 

In this context, this study progresses the state-of-the art 
by proposing how Look-Ahead and redundancy mitigation 
should be combined to improve cooperative perception and 
the system’s scalability. We focus on these two specific 
techniques because they are part of ETSI specifications on 
collective perception, and their combination has not been 
studied yet [8][9]. This study also analyzes the impact of 
congestion control and the coexistence of CPMs with other 
messages on cooperative perception, and in particular on the 
combination of Look-Ahead and redundancy mitigation or 
control. The analysis considers the DCC (Decentralized 
Congestion Control) framework defined by ETSI for 
congestion control, and analyzes the impact of DCC Access 
and DCC Facilities on the operation and performance of the 
combined Look Ahead and redundancy mitigation. 
Congestion control can significantly alter the generation and 
transmission of CPMs, and this analysis is key for the 
integration of the proposed techniques in the protocol stack 
and their consideration in standards. The conducted 
evaluation demonstrates that the proposed techniques 
improve the perception of CAVs and reduce the channel load 
and the information age compared to the baseline CPM 
generation rules.  

2. State of the Art 

Cooperative perception can help to overcome the 
limitations of onboard sensors and thus improve the safety 
and driving conditions of CAVs by exchanging sensed 
information. Some studies have proposed and evaluated the 
exchange of raw sensor information for cooperative 
perception [14]. However, exchanging raw sensor data 
would require a high bandwidth that can compromise the 
system’s scalability. Other formats such as layered cost maps 
[15] are also proposed to specify the sensor data in a grid-
based representation. To accurately track objects using a 
grid-based representation, vehicles need a 3D representation 
for each layer. This could increase the system’s complexity 
and the computational load. As a consequence, the majority 
of studies conducted to date consider instead the exchange of 
processed information about detected objects (e.g., their 
position, speed, size and type) for cooperative perception. In 
this paper, we have reviewed and analyzed the most relevant 
studies on this topic. These studies are classified in Table 1 
according to: 1) whether they consider the ETSI baseline 
generation rules as a benchmark or not; 2) whether they 
address the problem associated to the overhead; 3) whether 
they study redundancy mitigation; and 4) whether they 
analyze the impact of DCC on cooperative perception or not. 

Part of the existing studies focused on the definition of 
the message format and defined first techniques for message 
rate and content control as an alternative to the baseline 
generation rules defined by ETSI ([16]-[24]  in Table 1). 
Initial studies [16]-[17] addressed the definition of the 
message format and the type of information that should be 
included in cooperative perception messages. Günther et al. 
considered in [16] the exchange of periodic messages, each 
message including all the detected objects. They also 
proposed to include additional information about the 
transmitter (e.g., its position) and its sensor capabilities (e.g., 
range and field of view). This additional information helps 
the receiving vehicles estimate the free-space areas and 
better locate the objects with respect to the transmitter, which 
improves the detection time and reduces potential safety 
risks. Alternatively, the authors in [17] study the potential 
benefits of including additional information, such as the 
correlation and higher order derivatives (e.g., the 
acceleration or yaw rate) of the detected objects on the fusion 
accuracy. The work in [17] shows that this additional 
information can improve the detection accuracy and reduce 
the channel load.  

Other studies focused on controlling the rate at which 
cooperative perception messages are generated. These 
techniques are crucial to efficiently use the available 
bandwidth and, at the same time, obtain high perception 
levels. Initial studies like [24] evaluated if the information 
about detected objects should be attached to existing 
awareness messages (in particular, CAM or Cooperative 
Awareness Messages [38]) or should be transmitted in 
separate messages. Attaching the information about detected 
objects to existing awareness messages could reduce the 
communications overhead. However, it would condition 
when information about detected objects is transmitted. As a 
consequence, most of the conducted studies transmit 
cooperative perception messages separately, i.e., 
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independently to the transmission of existing basic 
awareness messages.  

The transmission of periodic CPMs was shown to be 
highly inefficient and generated an unnecessarily high 
channel load. As a consequence, most of the conducted 
studies have proposed and analyzed different techniques to 
control the message rate and content [18]-[23] to mitigate 
this problem. Studies [18] and [19] focused on the adaptation 
of the message generation rate. The authors in [18] propose 
to increase or decrease the rate at which CPMs are generated 
based on each vehicle’s priority. The priority depends on 
whether the vehicle is detecting objects that are not detected 
by nearby vehicles. The goal is to cover the blind sensor area 
of nearby vehicles by transmitting the detected objects in this 
region with higher priority. Similar to [18], the authors in 
[19] proposed a probabilistic dynamic scheme to control the 
transmission of CPMs. The study demonstrated that high 
awareness can be achieved in the network when transmission 
priority of vehicles is adapted based on its sensing 
capabilities.  

Other studies such as [20] and [21] proposed content 
control techniques to dynamically select the objects that 
must be included in each CPM, and thus optimize the 
message size. The study in [20] proposes a content control 
technique that includes an object in a CPM depending on its 
value or utility for its neighboring vehicles. The idea is to 
omit those objects that are not important for other vehicles. 
The accurate estimation of the value of each object in a 
distributed and dynamic environment is challenging, and the 
same authors partially address this challenge in [21] using 
deep reinforcement learning. A recent publication [23] 
decides based on the relative entropy between the sensors 
tracking accuracy and the V2X tracking accuracy if the 
object information is valuable for the nearby vehicles and 
must therefore be included in a CPM. One of the first studies 
to propose solutions to dynamically control both the rate and 
content of the CPM was [22]. The study analyzes the impact 
of such dynamic adaptation on tracking errors and mapping 
accuracy, and demonstrates that the joint rate and length 
control mechanism performs better than the adaptation of 
either the rate or the length. The study also concludes that the 
objects that are located farther away from the sender but near 
the edge of the sensors’ range should be prioritized.  

The most popular adaptation of the message rate and 
content proposed to date was defined in [10] and is based on 
the selection of the detected objects depending on their 
mobility or dynamics (e.g., their speed, acceleration and 
heading). In this case, the transmitter includes an object in a 
cooperative perception message if the object’s speed, 

acceleration or heading has significantly changed compared 
to the last time it was included in a message. This approach 
has been adopted so far on, for example, ETSI specifications 
on collective perception [8][9]. The definition of the baseline 
message generation rules by ETSI triggered the analysis of 
their performance in multiple studies ([11], [25]-[30] in 
Table 1).  

The performance achieved with these baseline 
generation rules has been studied using analytical models for 
different radio access technologies in [25][26], has been 
evaluated by means of simulation in [8][27][11], and has 
been tested in prototypes [28]-[30]. The analytical studies in 
[25] and [26] provide important insights about the perception 
that CAVs can achieve with these baseline generation rules. 
They evaluate the impact of the market penetration rate and 
traffic density on the environmental awareness and 
information age. They also identify that, in some scenarios, 
reducing the rate at which objects are included in CPMs 
would be beneficial to reduce the channel load and 
interference. The simulation studies conducted in [8], [27] 
and [11] provide more detailed evaluations of the baseline 
generation rules. The study in [27] shows that cooperative 
perception improves traffic safety; for example, the study 
finds that a “very good” safety, with low risk of collisions 
without fatalities becomes possible at V2X equipment rates 
higher than 25%. The study in [11] shows that cooperative 
perception can improve the perception capabilities of CAVs, 
but identifies two main inefficiencies of the baseline 
generation rules that impose important limitations. First, the 
baseline generation rules can generate a high number of 
cooperative perception messages with a small payload. The 
transmission of cooperative perception messages with a 
small payload increases the channel load with 
communications overhead rather than useful information 
about detected objects; e.g. current ETSI CPM includes 
around 200 bytes of overhead [12]. This overhead includes 
CPM headers and also protocol headers from the lower 
layers of the stack (e.g., PHY and MAC). Second, a CAV 
can receive simultaneously redundant information about the 
same object from multiple vehicles. Receiving redundant 
information could, in principle, be considered positive, since 
it can help improve the detection accuracy and mitigate 
potential packet losses. However, a high level of redundancy 
may overload the communications channel and reduce the 
possibility to transmit cooperative perception messages with 
critical (and not redundant) information. In addition, 
redundant information increases the computing power 
necessary at each vehicle to process the information 
received. To date, these two inefficiencies have been 

Table 1. Comparison of studies about cooperative perception 

Reference Baseline Overhead  Redundancy  DCC 

[16]-[23]   No No No No 
[24] No No No Access Reactive 

[11], [25]-[30] Yes No No No 
[12] Yes Yes No No 

[13], [31]- [35] Yes No Yes No 
[10] Yes No No Access Reactive 
[37] Yes No No Access and Facilities 

Our proposal Yes Yes Yes Access and Facilities 
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addressed independently in different studies, as it can be 
observed in Table 1 and is described below. 

The problem associated to the overhead generated with 
messages of small size was addressed in [12] with the so-
called Look-Ahead technique [12]. The Look-Ahead 
mechanism was designed to reduce the overhead generated 
with CPMs. It complements and extends the baseline 
generation rules by adding an additional process that groups 
the detected objects into larger CPMs. As a result, the 
message payload about detected objects is larger than the 
headers or overhead. [12] demonstrates that Look-Ahead can 
effectively reduce the rate at which CPMs are generated and 
increase their size. At the same time, it is able to reduce the 
channel load (and overhead), improve the reliability of V2X 
communications and enhance the perception of CAVs. To 
the authors’ knowledge, no other study has addressed this 
first inefficiency to date.  

The second inefficiency (redundancy) has been 
addressed in different studies through the design of 
redundancy mitigation or control techniques ([13], [31]-[35] 
in Table 1). For example, [31] proposes a probabilistic 
selection scheme to decide which objects are included in a 
perception message and suppress redundant transmissions. 
The scheme allows CAVs to adjust the transmission 
probability of each detected object based on the position, 
vehicular density and road geometry information. The study 
in [32] adapts the redundant information included in each 
CPM as a function of the channel load and the infrastructure 
availability. The results show that the proposed solution 
increases the awareness and reduces the channel load in the 
network compared to a periodic solution. The study in [34] 
employs a deep Q-network to determine the usefulness of 
detected objects based on their dynamic properties, using a 
reward function designed to reduce redundancy. The results 
of the study indicate that this approach improves perception 
and reduces the load on the communication channel. The 
authors propose in [13] the so-called dynamics-based 
redundancy mitigation technique. This technique extends the 
baseline generation rules to filter out the detected objects that 
have been recently transmitted by a nearby vehicle. To this 
aim, the transmitter omits from the perception message the 
detected objects that have not significantly changed their 
position, speed and heading since the last time it received a 
perception message with information about these same 
detected objects. The dynamics-based redundancy 
mitigation or control technique has been shown to reduce the 
channel load by up to 70% while achieving similar 
perception levels for short and medium distances when 
compared with the baseline generation rules. Other 
redundancy mitigation or control techniques listed by ETSI 
in [8] include: frequency-based, dynamics-based, 
confidence-based, entropy-based, distance-based and object 
self-announcement redundancy mitigation. The study in [33] 
evaluates some of these techniques and demonstrates that 
reducing or controlling redundancy can significantly 
improve network-related performance metrics (e.g., channel 
load and packet error rate) without significantly reducing the 
number of detected objects through perception messages and 
the time between updates about detected objects. The work 
in [35] evaluates the self-announcement redundancy 

mitigation technique defined in [8]. With this technique, the 
transmitter vehicle omits an object from the CPM if it detects 
that the object is transmitting its own messages (e.g. CAMs 
or CPMs). The results of the study show that this technique 
effectively balances the network load and the object 
perception. The study in [36] compares the performance of 
multiple redundancy mitigation techniques. The results 
showed that the distance-based [8] and dynamics-based [13] 
redundancy mitigation techniques achieve the best 
performance. 

Look-Ahead and redundancy mitigation or control 
techniques extend the baseline generation rules and provide 
significant benefits in terms of perception and channel load. 
However, the two techniques have been designed and 
evaluated so far independently and their combination needs 
to be carefully analyzed since they may have opposite effects 
on the generation of cooperative perception messages. Both 
techniques are included in by ETSI in [8] and [9]. The 
combination of the two types of techniques has not been 
studied yet, and in fact, there are different ways to combine 
them as we show in this study. The combination must 
carefully look at how and when each object is included in a 
cooperative perception message since each decision affects 
not only to the messages transmitted by a CAV, but also the 
messages transmitted by other nearby CAVs because of the 
use of redundancy mitigation. In addition, it is important that 
the combination and evaluation considers the impact of 
congestion control mechanisms since these mechanisms 
decide and impact which messages are ultimately transmitted 
based on the channel load. It is important to highlight that 
only a few studies have analyzed so far the impact of 
congestion control schemes on the effectiveness of 
cooperative perception, as shown in Table 1. Günther et al. 
studied in [24] the impact of DCC Access on the periodic 
generation of cooperative perception messages, and in [10] 
when the baseline message generation rules are considered. 
The study conducted in [37] analyzed the impact of both 
DCC Access and DCC Facilities on cooperative perception 
considering the baseline generation rules, and demonstrated 
the importance of the DCC configuration on both perception 
and latency. To the authors’ knowledge, none of the existing 
studies has evaluated such impact when considering Look-
Ahead or redundancy mitigation techniques, and this 
evaluation is key for their integration in the ETSI ITS 
Architecture and thus for their future adoption in the 
standards.  

In this context, this study evaluates the proposed 
solutions on top of the DCC framework defined by ETSI for 
congestion control, including DCC Access and DCC 
Facilities. DCC Access [39] is a mandatory component that 
operates as a gatekeeper in the Access layer to control the 
number of messages transmitted by each vehicle. To this 
aim, the upper bound of the fraction of time that each vehicle 
can transmit is calculated as a function of the channel load. 
If the time consumed by the messages generated by the upper 
layers is higher than this upper bound, the messages can be 
internally dropped (i.e., not transmitted) at the Access layer. 
Two approaches, namely Reactive and Adaptive, are defined 
for DCC Access [39] and both are evaluated in this paper. 
The DCC Access Reactive approach makes use of a state 
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machine, with each state mapped to a range of channel load 
levels and a message rate. The DCC Access Adaptive 
approach uses a linear control process so that each vehicle 
adapts its message transmission rate to converge to a target 
channel load considering the duration of the messages. DCC 
Access can also be combined with DCC Facilities [40], 
which has been recently approved by ETSI. DCC Facilities 
is an optional component in the Facilities layer that controls 
the number of messages that each application/service can 
generate for each vehicle. To this aim, DCC Facilities makes 
use of the upper bound of the fraction of time that the vehicle 
can transmit used by DCC Access and information about the 
previously generated messages to adapt the message 
generation rate of each application/service. Previous studies 
have shown the limitations of DCC Access and the potential 
of DCC Facilities to improve both perception and 
information age when using the baseline generation rules 
[37]. 

The proposed solutions are compared in this study with 
the baseline generation rules defined by ETSI, as well as with 
the Look-Ahead technique originally proposed in [12] and 
the redundancy mitigation technique originally proposed in 
[13].  These three techniques used for the comparison have 
been selected because they are part of ETSI specifications 
[8][9], and, to the authors knowledge, there is no other 
combination technique proposed in the literature. 

3. Collective Perception Service  

The CPS is a Facilities-layer service defined by ETSI 
[8][9] that includes the necessary functions and interfaces to 
implement collective perception, and defines the CPM 
format and the CPM generation rules.  

3.1. CPM format  

The CPM format includes an ITS (Intelligent Transport 
System) PDU (Protocol Data Unit) header and five different 
containers: a Management Container, an Originating Vehicle 
or RSU (Road Side Unit) Container, a Sensor Information 
Container, a Perceived Object Container and a Perceived 
Region Container. The message ID, the station ID and the 
protocol version are included in the ITS PDU header. The 
Management Container is mandatory and includes 
information about the originating station (vehicle or RSU). 
The Originating Vehicle or RSU Container is optional and 
contains data elements with information about the 
originating station. The Sensor Information Container is also 
optional and includes information about the sensing 
capabilities of the transmitter. One Sensor Information 
Container is included for each sensor. The Perceived Object 
Container is also optional and is used to exchange 
information about the mobility and characteristics of the 
detected objects. One Perceived Object Container is included 
for each detected object. Lastly, the Perceived Region 
Container is optional and defines the actual perception 
capabilities available to the originating station, offering 
additional (often dynamic) details to the information 
provided in the sensor information container. 

3.2. CPM generation rules  

The CPM generation rules define when a vehicle or 
RSU should generate a CPM and the information that the 
CPM should include (e.g., which detected object must be 
included in the Perceived Object Container). The CPM 
generation rules are defined by ETSI in [9], and will be 
referred to as the baseline generation rules in this study. The 
baseline generation rules establish that a vehicle has to check 
every T_GenCpm if a new CPM should be generated. 
T_GenCpm should be set between 100 ms and 1000 ms and 
can be adapted by DCC based on the channel load. For every 
T_GenCpm, a vehicle should generate a new CPM if it has 
detected a new object (i.e., an object that the vehicle or RSU 
has not transmitted before), or if at least one of the following 
conditions is satisfied for any of the previously detected 
objects:  
1. The absolute difference (∆P) between the current 

position of the object and its position the last time it was 
included in a CPM is higher than 4 m. 

2. The absolute difference (∆S) between the current speed 
of the object and its speed the last time it was included 
in a CPM is higher than 0.5 m/s. 

3. The time difference (∆T) between the current time and 
the last time the object was included in a CPM is higher 
than 1 s. 
A vehicle includes in a new CPM all new detected 

objects and those objects that satisfy at least one of the 
previous defined conditions (i.e., ∆P>4m or ∆S>0.5m/s or 
∆T>1s). The vehicle still generates a CPM every second even 
if none of the detected objects satisfy any of the previous 
conditions. The information about the onboard sensors is 
included in the CPM only once per second.  

3.3. Redundancy mitigation or control  

Redundancy mitigation or control techniques extend 
the baseline generation rules to control the number of 
detected objects included in the CPM and reduce 
redundancy. Different redundancy mitigation techniques are 
defined by ETSI in [8][9]. Among them, this study focuses 
on the dynamics-based redundancy mitigation technique 
because it is based on the mobility of the objects and thus can 
be considered as a natural extension of the baseline 
generation rules, and because it provides one of the best 
performances [36]. This dynamics-based redundancy 
mitigation technique was first proposed and evaluated in 
[13], and then included by ETSI in [8][9]. It will be referred 
to as RM in this paper.  

The dynamics-based redundancy mitigation technique 
does not include in a CPM an object that satisfies the baseline 
generation rules if the object’s position or speed have not 
significantly changed since the last time the transmitting 
vehicle received information about this object in a CPM from 
any other vehicle. The objective is to avoid transmitting 
information about detected objects that have been recently 
included in CPMs transmitted by other vehicles, since this 
information has probably been received by most of the 
nearby vehicles.  

The redundancy mitigation technique is executed after 
the baseline generation rules, and only when the baseline 
generation rules indicate that a new CPM must be generated. 
When executed, the technique computes for every detected 
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object that should be included in the CPM according to the 
baseline generation rules, the change in its absolute position 
(ΔP_R) and speed (ΔS_R) since the last time the object was 
received in a CPM transmitted by other vehicles. If ΔP_R ≤ 
P_Threshold and ∆S_R ≤ S_Threshold, the object is not 
included the CPM. When the P_Threshold and/or the 
S_Threshold parameters decrease, the detected objects are 
omitted from the CPM less frequently, increasing the 
redundancy. 

The evaluation of the dynamics-based redundancy 
mitigation technique in [13] demonstrated its potential to 
reduce the amount of information transmitted about detected 
objects to control the level of redundancy. Compared to the 
baseline generation rules, RM reduces the redundancy by 
25% with P_Threshold=1m and 64% with P_Threshold=4m 
in a scenario with low traffic density. The redundancy 
increases with the traffic density, because more vehicles 
detect and transmit information about the same objects, but 
the gains obtained with RM are maintained for higher 
densities. This reduction of the object redundancy results in 
a reduction of the channel load. More specifically, [13] 
showed that the channel load is reduced by 17% and 58% 
compared to the baseline generation rules in the low traffic 
density scenario with P_Threshold equal to 1m and 4m, 
respectively. This reduction is even higher for the high traffic 
density scenario (26% and 68%). 

The reduction of redundancy has a negative effect on 
the perception, especially at long distances. The perception 
is estimated in [13], and in this paper, with the object 
perception ratio. This metric is defined as the probability to 
detect an object within the observation time window. A 
vehicle successfully detects an object if it receives at least 
one CPM with information about that object during the 
observation time window. In the low traffic density scenario, 
[13] showed that the distance at which an object perception 
ratio of 0.95 is obtained decreases from 338m (baseline) to 
322m (RM with P_Threshold=1m) or to 244m (RM with 
P_Threshold=4m). Similar trends were obtained for higher 
traffic densities. 

The application of a redundancy mitigation technique 
has also an important impact on the number of CPMs 
generated and their size [13]. The number of CPMs 
generated per second by RM is between 11% and 52% lower 
than the baseline for low density, and between 21% and 64% 
for high density [13]. The number of objects included in each 
CPM is also significantly decreased with RM. The 
percentage of CPMs that contain only one object is increased 
from 23% (baseline) to 42% (RM with P_Threshold=1m) or 
to 74% (RM with P_Threshold=4m) in the low traffic 
density scenario, and similar trends were obtained in high 
density. While this reduction allows RM to reduce the 
channel load, the generation of CPMs with a low number of 
objects is not efficient, because of the large of overhead in 
each CPM (protocol headers, Management Container, and 
Originating Vehicle Container). 

3.4. Look-Ahead  

 The Look-Ahead (LA) technique was first proposed in 
[12] and is now part of ETSI specifications [8][9]. LA 
extends the baseline generation rules to generate less 

frequent CPMs that contain a higher number of detected 
objects. Its goal is to reduce the amount of CPMs generated 
to reduce the communications overhead without reducing the 
amount of information transmitted about the detected 
objects. To do so, LA groups the information about the 
detected objects into a smaller number of CPMs of larger 
size. LA is triggered every time a CPM must be generated by 
the baseline generation rules. Then, LA adds to this CPM the 
objects that it predicts will be included in the next CPM, 
considering that the detected objects maintain their current 
acceleration. To this aim, LA estimates the following 
parameters for the objects that do not currently satisfy the 
baseline generation rules: 

 
Next ∆P = ∆P + SꞏT_GenCpm + 0.5ꞏAꞏT_GenCpm2 (1) 

Next ∆S = ∆S + AꞏT_GenCpm (2) 

Next ∆T = ∆T + T_GenCpm (3) 

where S and A are the current speed and acceleration of the 
detected object. LA includes in the current CPM those 
detected objects that satisfy Next ∆P>4m or Next ∆S>0.5m/s 
or Next ∆T>1s. These objects would not be initially included 
in the current CPM following the baseline generation rules, 
but are included because LA estimates that they will that 
satisfy the baseline generation rules in the next CPM. As a 
result, LA avoids that these objects generate a new CPM in 
the next T_GenCpm, and it then reduces the number of 
generated CPMs of small size.  

The work in [12] demonstrated that LA is able to reduce 
the number of CPMs generated per second by 39%-44% in 
highway environments, and by 32%-33% in urban 
environments, compared to the baseline generation rules.  
The average number of objects included in a CPM is 
increased by LA by 95%-110% (highway) and 63%-71% 
(urban) compared to the baseline. As a consequence, the 
overhead in the transmitted CPMs is significantly lower with 
LA than with the baseline (49% vs 76%). The reduction of 
the overhead decreases the CBR by 11%-16% (highway) and 
by 22%-24% (urban). One important aspect to highlight is 
that LA reduces the CBR without reducing the rate at which 
each vehicle transmits each object. In fact, LA increases the 
average number of times that a detected object is reported in 
a CPM compared to the baseline generation rules (by 20% 
and 10% in the highway and urban scenarios, respectively). 
As a consequence, LA is able to improve the object 
perception ratio compared to the baseline generation rules, 
while reducing the channel load.  

The application of LA has also an effect on redundancy. 
LA increases the redundancy by 21%-30% compared to the 
baseline generation rules [8]. This effect is produced because 
LA increases the number of times an object is reported in a 
CPM by each vehicle. The open question is whether this 
redundancy is needed or can be reduced through the 
combination of LA and RM to decrease the channel load. 
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4. Techniques to combine Look-Ahead and Redundancy 
Mitigation  

RM and LA have shown to have advantages but also 
inefficiencies when applied individually. This section 
presents the 3 techniques to combine RM and LA for higher 
effectiveness proposed in this paper. The first two techniques 
sequentially combine RM and LA, and are thus referred to as 
LARM and RMLA. The third one, is a more advanced 
solution that builds on top of eRMLA with an enhanced 
selection of the objects to be included in the CPM. 

4.1. LARM 

LARM first applies the baseline generation rules and 
LA, and then applies RM to the objects selected by the 
baseline generation rules and LA. As a consequence, LARM 
removes from the CPM all the objects that are considered 
redundant even though they were selected for inclusion by 
the baseline generation rules or LA. The objective is to 
reduce the redundancy generated by LA, and also to benefit 
from the reduction in channel load achieved with RM.  

Figure 1a illustrates with an example the operation of 
LARM, and how it selects the objects to be included in a 
CPM. In the example, a transmitting vehicle detects 25 
objects, but only 6 of them currently satisfy the baseline 
generation rules. Additionally, 3 detected objects that do not 
currently satisfy the baseline generation rules will do so in 
the next T_GenCpm. LARM applies then RM to the 9 objects 
that currently satisfy the generation rules and in the next 
T_GenCpm. 3 out of these 9 objects are detected as 
redundant by RM and removed from the CPM. As shown in 
Figure 1a, RM removes the objects initially selected by the 
baseline generation rules and objects selected by LA. As a 
result, LARM finally includes 6 detected objects in the 
current CPM. 

4.2. RMLA 

RMLA first applies the baseline generation rules and 
RM, and then LA. As a result, RM removes first the objects 
that currently satisfy the baseline generation rules but are 
considered redundant. Then, LA is applied to the objects that 
do not currently satisfy the baseline generation rules (i.e., LA 
is not applied to the ones included in the current CPM or the 
ones that have been removed by RM). By applying LA after 
the baseline generation rules and RM, RMLA anticipates the 
transmission of as many objects as possible in the current 
CPM, but omits the ones currently considered redundant by 

RM. However, RMLA can anticipate the transmission of 
objects that may be deemed redundant because it applies LA 
after RM. This is one of the main differences with LARM, 
which applied RM at the end and then removed all objects 
deemed redundant from the list of objects selected by the 
baseline generation rules and LA. We should note that 
RMLA avoids the transmission of a CPM if it only contains 
redundant objects, because LA is only applied if at least one 
selected object is not redundant.  

Figure 1b illustrates the operation of RMLA and how it 
selects the objects to be included in a CPM using the same 
example than in Figure 1a. With RMLA, 6 objects are 
selected by the baseline generation rules, and 2 of them are 
removed by the RM technique. Then, LA is applied to the 
objects that not currently satisfy the baseline generation 
rules, and it thus adds 3 objects to the CPM. The differences 
between RMLA and LARM can be clearly observed by 
comparing Figure 1a and Figure 1b. With LARM, part of the 
objects anticipated by LA were removed by RM. However, 
with RMLA, RM is only applied to the objects that currently 
satisfy the baseline generation rules, but not to the objects 
anticipated by LA.  

4.3. eRMLA 

The sequential combination of RM and LA has 
potential to improve the effectiveness of collective 
perception. However, we can already anticipate some 
potential inefficiencies. With RMLA, LA could add to the 
CPM objects that could be redundant, because RM is applied 
first. With LARM, RM could remove redundant objects that 
have been anticipated by LA, because LA is applied first; this 
could generate frequent CPMs with a low number of objects.  

eRMLA is designed with two goals. The first one is to 
avoid the transmission of a CPM if it only contains redundant 
objects, i.e., when all the objects that satisfy the baseline 
generation rules are redundant. When this happens, eRMLA 
behaves as RM and RMLA, and it does not generate a CPM. 
The second goal is to include as many objects as possible in 
the CPM when a CPM has to be generated (e.g., when at least 
one object satisfies the baseline generation rules and is not 
redundant). When this occurs, eRMLA behaves as LA and 
includes all the objects removed by RM plus the ones 
anticipated by LA.  

To achieve its goals, eRMLA first applies the baseline 
generation rules and then RM in order to remove all the 
objects included in the current CPM that are considered 
redundant (like in RMLA). If all the objects are removed, 

    

(a) LARM (b) RMLA (c) eRMLA 

Figure 1. Example to illustrate how each proposal combines the baseline generation rules, RM and LA to build a CPM. 

Detected objects Objects that currently satisfy the baseline generation rules Objects included in the current CPM

Redundant objects Objects that will satisfy the baseline generation rules in the next T_GenCPM
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then the CPM is not generated. However, if at least one 
object satisfies the baseline generation rules and is not 
removed by RM, eRMLA applies LA to all detected objects, 
including those removed by RM. This is in contrast to 
RMLA that applies LA to all detected objects except those 
removed by RM. This is an important difference because all 
objects removed by RM currently satisfy the baseline 
generation rules. Therefore, when eRMLA applies LA to 
these objects, LA predicts that they will also satisfy the 
baseline generation rules in the next T_GenCpm. This is the 
case because e.g. the distance traveled since the last time 
these objects were included in a CPM increases with time. In 
this context, LA in eRMLA will anticipate their transmission 
in the current CPM. The only objects removed by RM that 

will not be anticipated by the original LA are the new 
detected objects. This is the case because LA is able to 
anticipate only the transmission of objects that have been 
already transmitted in a previous CPM. eRMLA modifies the 
original LA technique so that it can also anticipate in the 
current CPM the new detected objects that have been 
removed by RM. 

The operation of eRMLA is described in Algorithm I. 
The baseline generation rules are first executed to identify 
and select for inclusion in the current CPM the detected 
objects that satisfy ∆P>4m or ∆S>0.5m/s or ∆T>1s (lines 1-
13 of Algorithm I). Then, RM removes from the CPM the 
objects that are considered redundant (i.e., that satisfy 
ΔP_R≤P_Threshold and ∆S_R≤ S_Threshold) as specified in 
lines 14-23 of Algorithm I. If all objects are removed, the 
CPM is not generated. When a CPM must be generated (e.g. 
because at least one object is included in the CPM after 
applying RM), eRMLA triggers LA (lines 25-35 of 
Algorithm I). LA anticipates and includes in the current CPM 
the detected objects that satisfy Next ∆P>4m or Next 
∆S>0.5m/s or Next ∆T>1s. LA also includes in the current 
CPM the new detected objects that were included by the 
baseline generation rules but removed by RM (lines 31-33 of 
Algorithm I).  

Figure 1c illustrates the operation of eRMLA and the 
objects it selects for inclusion in the current CPM using the 
same example. The figure shows that RM removes two 
objects from the CPM, i.e., it removes 2 out of 6 detected 
objects that currently satisfy the baseline generation rules. 
Since RM does not remove all objects, the CPM must be 
generated, and LA is applied next. LA anticipates 3 
additional detected objects that satisfy the baseline 
generation rules in the next T_GenCpm, plus the 2 objects 
initially removed by RM. As a result, the CPM generated 
contains 9 objects in total. The CPM generated in Figure 1c 
is equal to the CPM generated by LA alone. However, it is 
important to note that this might not be the case for all CPMs. 
With eRMLA, LA is not triggered if RM removes all the 
objects that currently satisfy the baseline generation rules. If 
this is the case, then a CPM is not generated. The objective 
sought with RM in eRMLA is to reduce the number of CPMs 
generated per second and increase their size compared to 
when using LA alone. 

 

5. Evaluation scenario and settings  

The evaluation is performed using the network 
simulator ns-3 and the road mobility simulator SUMO. 
SUMO is used to realistically generate the position and speed 
of all vehicles during the simulation in the considered 
scenario. The scenario is a 5 km highway with two driving 
directions. Three traffic densities (low, medium and high) 
are simulated as summarized in Table 2. The low and 
medium traffic densities consider 3 lanes in each direction (6 
lanes in total) and the high traffic density considers 4 lanes 
in each direction (8 lanes in total). The vehicles speed for 
each traffic density is configured following the statistics of a 
typical US highways [42]. To avoid boundary effects, the 
statistics are only taken from the vehicles located within the 
2 km around the center of the simulation scenario. 

ALGORITHM I. eRMLA 
Input: Detected objects  
Output: Objects (if any) to include in CPM  
Execution: Every T_GenCpm 

1. Set flag = false 
2. For every detected object do 
3.     If the object is a new detected object then 
4.         Include object in current CPM  
5.         Set flag = true 
6.     Else 
7.         Calculate ∆P, ∆S and ∆T since the last time the object was 

included in a CPM 
8.         If ∆P>4 m || ∆S>0.5 m/s || ∆T>1 s then 
9.             Include object in current CPM 
10.             Set flag = true  
11.         End If 
12.     End If 
13. End For 
14. If flag = true then 
15.     For every object included in the current CPM do 
16.         Calculate ΔP_R and ΔS_R since last time received in a 

CPM 
17.         If ∆P_R < P_Threshold && ∆S_R < S_Threshold then 
18.             Omit object in current CPM 
19.         End If 
20.     End For 
21.     If current CPM does not contain any object then 
22.         Set flag = false 
23.     End If 
24. End if 
25. If flag = true then 
26.    For every detected object not included in current CPM do 
27.         Calculate Next ∆P, Next ∆S and Next ∆T 
28.         If Next ∆P>4 m || Next ∆S>0.5 m/s || Next ∆T>1 s then 
29.              Include object in current CPM 
30.         End if 
31.         If the object is a newly detected object then 
32.             Include object in current CPM 
33.         End If 
34.    End For  
35. End If 
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In ns-3, all vehicles are equipped with an ITS-G5 
transceiver (based on IEEE 802.11p), and a CPS component 
that generates CPMs using an onboard sensor with 360º field 
of view and 150 m range. Object detection is performed in 
run time in ns-3, considering the sensor shadowing effect in 
the XY-plane that considers the occlusion caused by nearby 
vehicles. We assume that the sensors can detect the vehicles 
that are in their line-of-sight in both driving directions. The 
CPS component implements the baseline generation rules, as 
well as the LA, RM, LARM, RMLA and eRMLA 
techniques. Every generated CPM includes all the mandatory 
headers and containers, i.e. one ITS PDU header, one 
Management Container and one Originating Vehicle 
Container (121 Bytes in total). In addition, one Perceived 
Object Container (35 Bytes) is included per detected object 
in the CPM if it satisfies the conditions of the applied 
techniques. Also, one Sensor Information Container (35 
Bytes) is included in the CPM every second. The 
transmitting vehicle dynamically computes the CPM size 
based on the number of containers in each CPM and their 
respective sizes. The value of the T_GenCpm parameter has 
been set to 100 ms as default, so the maximum CPM 
generation rate is 10 Hz. Following [13], the dynamics-based 
redundancy mitigation technique is implemented 
considering the following threshold values: 
P_Threshold=1m and S_Threshold=0.5m/s.  

The transmission power of the ITS-G5 transceiver is 23 
dBm and the sensing threshold is set to -85 dBm. All 
messages are transmitted using the 6 Mbps data rate (i.e., 
QPSK modulation with ½ code rate) in the 5.9 GHz band. In 
the simulations, the Winner+ B1 radio propagation model 
has been considered following the 3GPP V2X guidelines 
[41]. Table 3 summarizes the main communication 
parameters.  

 

Table 2. Traffic scenarios 

Parameter 
Traffic density scenarios 

Low Medium High  
Number of lanes 6 6 8 
Traffic density  120 veh/km 180 veh/km 240 veh/km 

Speed per lane 
70 km/h 
66 km/h 
59 km/h 

50 km/h  
for all lanes 

50 km/h  
for all lanes 

Table 3. Communication parameters 
Parameter Values 

Transmission power 23 dBm 
Antenna gain (tx and rx) 0 dBi 

Channel bandwidth 10 MHz 
Carrier frequency 5.9 GHz 

Noise figure 9 dB 
Energy detection threshold -85 dBm 

Data rate 6 Mbps (QPSK 1∕2) 

6. Evaluation  

The proposed techniques are first analyzed in section 
6.1 without including congestion control. The goal of this 
first analysis is to understand well how the standalone and 
combination techniques behave before considering any 

additional influences. Then, the proposed techniques will be 
evaluated considering the impact of congestion control and 
the coexistence of CPMs with other messages in section 6.2. 
Congestion control can influence the generation and 
transmission of CPMs.  

6.1. Without congestion control  

To compare the different techniques from the 
perception point of view, we use the object perception ratio 
metric. This metric is defined as the probability to 
successfully detect an object within a given observation time 
window. The time window has been set equal to 300 ms, 
which is the time required by the baseline generation rules 
for a vehicle to send an update about a detected object 
considering the speed of the object in the considered 
scenarios.  

Figure 2 plots the object perception ratio obtained with 
the different techniques under all traffic densities under 
evaluation. In the low traffic density scenario (Figure 2a), all 
the techniques achieve a very high object perception ratio up 
to around 300 m. For larger distances, the object perception 
ratio decreases due to propagation and interference effects. 
When the traffic density augments (Figure 2b and  Figure 
2c), the object perception ratio decreases in general because 
the channel load and interferences increase. For all the 
techniques, the object perception ratio is still very high up to 
250 m for the medium density (Figure 2b) and up to 200 m 
for the high density (Figure 2c). RM and LA work as 
expected: LA significantly improves the perception for low 
and medium densities compared to the baseline, and RM 
improves the perception for medium and high densities. 
LARM and RMLA outperform the baseline technique for 
medium and high traffic densities, but only provide a 
perception higher than LA for the highest density. eRMLA 
achieves the highest perception levels for all traffic densities, 
improving the perception achieved by LARM and RMLA by 
12%-27% (relative distance increase for an object perception 
ratio of 0.95 using the baseline as a reference). It also shows 
that eRMLA is scalable because the object perception ratio 
obtained is nearly maintained when the traffic density 
increases.  

eRMLA achieves the best perception because it is able 
to generate the lowest channel load (Table 4) and achieves 
the highest transmission efficiency. More specifically, 
eRMLA is more efficient because it is able to generate longer 
CPMs (higher number of objects, Table 5) and less 
frequently (Table 6). As a consequence, eRMLA presents 
around 50% improvement in terms of channel load compared 
to the baseline generation rules, and 1%-12% improvement 
compared to LARM and RMLA (Table 4). In addition, 
eRMLA is able to reduce the redundancy achieved compared 
to the baseline generation rules and LA, as it can be observed 
in Figure 3 for medium traffic density. This figure plots the 
detected object redundancy, computed as the number of 
CPMs that a vehicle receives with information about the 
same object in a given observation time window (300 ms in 
this study). RMLA and LARM achieve the lowest detected 
object redundancy, and they behave nearly as RM, that 
focuses on controlling redundancy without trying to improve 
the transmission efficiency. eRMLA thus provides a higher 
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redundancy than LARM and RMLA, but with lower channel 
load, demonstrating again its higher efficiency (it transmits 
more information about detected objects and less overhead). 
Similar trends are achieved for the other densities. 

 

(a) Low traffic density 

(b) Medium traffic density 

(c) High traffic density 
Figure 2. Object perception ratio as a function of the distance 
between the detected object and the vehicle receiving the CPM. 

 
Table 4. Average CBR (Channel Busy Ratio) 

Techniques 
Traffic Density 

Low Medium High 
Baseline 49.4% 64.4% 82.1% 

RM 29.1% 35.5% 49.0% 
LA 41.4% 56.5% 82.7% 

LARM 27.3% 32.4% 46.0% 
RMLA 25.8% 30.0% 43.0% 
eRMLA 24.4% 29.0% 42.0% 

Table 5. Average number of objects included in each CPM 

Techniques 
Traffic density 

Low Medium High 
Baseline 5.1 5.3 6.4 

RM 1.9 1.8 1.9 
LA 10.4 11.0 12.3 

LARM 2.2 2.1 2.1 
RMLA 3.4 3.1 3.2 
eRMLA  13.8 14.1 17.4 

Table 6. Average number of CPMs generated per second 

Technique 
Traffic density 

Low Medium High 
Baseline  9.6 9.4 9.6 

RM 7.1 6.2 6.7 
LA 5.4 5.4 6.2 

LARM 6.4 5.6 6.1 
RMLA 5.4 4.7 5.1 
eRMLA  2.6 2.2 2.1 

 

 
Figure 3. Detected object redundancy for medium traffic density. 

The effectiveness of cooperative perception also 
depends on the latency experienced when exchanging the 
sensed data. We then evaluate the information age metric, 
which is defined as the difference between the time a CPM 
is generated and the time it is received. This metric provides 
information about the freshness of the received information. 
Figure 4 represents the mean information age obtained for all 
the techniques and traffic densities. The information age is 
highly influenced by the channel access mechanism, the 
channel load and also the packet length. The propagation 
delay can be considered negligible. Figure 4 shows that the 
information age is below 2 ms for all techniques under low 
and medium traffic densities. For the high-density scenario, 
the information age increases, especially for the baseline 
generation rules and LA because they generate higher 
channel load levels. Figure 4 shows that eRMLA results in a 
slightly higher information age compared to LARM and 
RMLA (around 0.8ms higher in the worst case). This 
difference is produced because eRMLA generates 
significantly larger messages. In fact, eRMLA has the 
highest average number of objects included in each CPM 
(Table 5), and most of its CPMs include the Sensor 
Information Container because it has the lowest CPM 
generation rate (Table 6). This increases the message size 
and thus the time required to receive it. This additional time 
is the origin of the increment of the information age observed 
in Figure 4 for eRMLA compared to LARM and RMLA.  
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Figure 4. Average information age of CPMs for all traffic densities. 

6.2. Evaluation with congestion control 

This section evaluates the performance achieved with 
the proposed combination techniques when considering the 
impact of congestion control and the coexistence of CPMs 
with other messages. These two aspects can significantly 
alter the generation and transmission of CPMs and can thus 
influence the performance of the collective perception 
service. This analysis is key for the integration of the 
proposed techniques in the protocol stack and their potential 
incorporation in standards. For this analysis, this study 
considers the DCC framework and the impact of DCC 
Access [39] and DCC Facilities [40]. This evaluation focuses 
on the high traffic density scenario that generates the highest 
channel load levels. The evaluation in Section 6.2.1 

 
1 With the DCC Access Reactive approach vehicles tend to synchronize with each other and transmit nearly at the same time [45]. This 

effect provokes that the DCC Access Reactive approach generates a significant amount of packet collisions. 

considers that only CPMs are transmitted in the channel, 
while Section 6.2.2 considers that the transmission of CAMs 
and CPMs share the same radio channel, since ETSI has not 
decided yet the channel for the CPMs [43]. 

6.2.1. Only CPMs  

The impact of DCC on the object perception ratio is 
shown in Figure 5. Figure 5a and b show the results obtained 
with DCC Access only, while Figure 5c and d show the 
results when both DCC Access and Facilities are considered. 
The results depicted in this figure clearly show that the 
highest object perception ratio is again obtained with 
eRMLA independently of the DCC configuration (relative 
distance improvement between 17% and 325% compared to 
LARM and RMLA using the baseline as a reference). Figure 
5a shows that the packets dropped by DCC Access Reactive 
significantly reduce the object perception ratio. This 
degradation partially results from the well-known 
synchronization1 problem [37], observed with DCC Access 
Reactive that increases the probability of packet collisions. 
Only eRMLA is not affected by packet dropping because of 
its low CPM generation rate (Table 6), that allows that CPMs 
do not wait in the DCC Access queue and are always 
transmitted. DCC Access Adaptive (Figure 5b) does not 
negatively impact any of the proposed techniques due to their 
low CBR (Table 4).  

Figure 5c shows that the performance achieved with 
eRMLA with DCC Access Reactive and DCC Facilities is 
slightly reduced at larger distances compared to the scenario 
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Figure 5. Object perception ratio as a function of the distance between the detected object and the vehicle receiving the CPM for 
different DCC configurations in the high traffic density scenario. 
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with only DCC Access (Figure 5a) because of a small 
reduction in the CPM transmission rate. Figure 5c also shows 
that the object perception ratio of LARM and RMLA 
significantly increases compared to the scenario when only 
DCC Access is used. This improvement is mainly produced 
because LARM and RMLA generate aperiodic CPMs with 
DCC Facilities (LARM and RMLA sometimes omit CPMs 
due to the use of redundancy mitigation and Look-Ahead). 
This reduces the probability that all vehicles simultaneously 
transmit and hence combats the synchronization problem.   

Figure 5d shows that the object perception ratio 
obtained with the three proposed techniques when jointly 
considering DCC Access Adaptive and DCC Facilities is 
close to the one obtained when only DCC Access Adaptive 
is used (Figure 5b). This is the case because the proposed 
techniques reduced the CBR below 50% and thus DCC 
Access Adaptive was not activated. However, the object 
perception ratio achieved with the baseline generation rules 
improves using DCC Access Adaptive and Facilities. This is 
the case because DCC Facilities reduces the CPM 
transmission rate and increases the number of objects in each 
CPM. This eventually reduces the CBR and improves the 
percentage of CPMs successfully received. 

We have also evaluated the information age 
experienced with the baseline generation rules and the 
proposed techniques with all the DCC configurations 
evaluated. The results are shown in Figure 6. The figure 
shows in percentage the difference between the baseline and 
each of the proposed techniques. When only DCC Access is 
used (Figure 6a), the information age generally increases (up 
to 130ms) compared with the scenario without DCC (less 
than 6 ms) because of the waiting time of the packets at the 
DCC Access queues. The information age obtained with 
eRMLA and DCC Access Reactive is significantly lower 
than the baseline (around 130ms lower) and also lower than 
LARM and RMLA (around 90ms lower). This improvement 
is achieved by eRMLA because it reduces the channel load, 
and packets are not dropped or queued at the access layer. 
With DCC Access Adaptive, the proposed techniques reduce 
the information age compared to the baseline by around 
70ms, since the channel load they generate is not sufficiently 
high to activate DCC Access. In this case, eRMLA achieves 
an information age that is around 1ms higher than LARM 
and RMLA, but, as previously discussed, this increment can 
be considered negligible. 

When DCC Access and Facilities are used (Figure 6b), 
the information age is generally decreased compared to when 
only DCC Access is used. This is the case because DCC 
Facilities influences the CPM generation and CPMs tend to 
wait less time in the DCC Access queues. However, the 
information age can still be significantly higher than when 
DCC is not used. This is particularly the case for the baseline 
generation rules, and when LARM and RMLA are 
considered with the Reactive approach. In this case, eRMLA 
achieves the lowest information age (53ms lower than the 
baseline and around 8ms lower than LARM and RMLA). 
When DCC Facilities is combined with DCC Access 
Adaptive, the three proposed techniques achieve nearly the 
same information age than in the scenario without DCC 
(Figure 4).  

6.2.2.CPMs and CAMs  

This section complements previous evaluations with a 
scenario where all vehicles generate and transmit CAMs and 
CPMs on the same radio channel. The transmission of CAMs 
increases the channel load and activates DCC with higher 
probability. The CAMs are generated following the ETSI 
generation rules defined in [38] and their size is set equal to 
350 bytes [44]. The default T_GenCam parameter has been 
set to 0.1 s so the maximum CAM rate is 10 Hz. However, 
DCC Facilities may adapt T_GenCam. CAMs and CPMs are 
configured with the same DCC profile so that they have the 
same priority and share the channel equally.  

Figure 7 depicts the object perception ratio achieved 
with all DCC configurations when both CAMs and CPMs 
are transmitted on the same channel. The figure shows that 
the highest perception is again obtained withe eRMLA for 
all DCC configurations. However, the perception achieved 
decreases compared to the scenario without CAMs since 
CAMs consume part of the bandwidth and generate 
additional interferences. This degradation is also observed in 
LARM and RMLA. The baseline generation rules achieve 

 
(a) DCC Access  (b) DCC Access + DCC Facilities 

Figure 6.  Average information age for CPMs for different DCC configurations when CPMs are transmitted on the same channel in the 
high traffic density scenario. 
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the lowest perception ratio when only DCC Access is used 
(especially with DCC Access Reactive) due to the 
synchronization problem. The differences among the 
proposed techniques are particularly high with DCC Access 
Reactive (Figure 7a), especially because eRMLA is able to 
significantly reduce the number of CPMs generated per 
second. In fact, eRMLA is able to increase the distance at 
which an object perception ratio of 0.95 is achieved by 96% 
and 120% compared to RMLA and LARM, respectively, 
using the baseline as a reference. With DCC Access 
Adaptive (Figure 7b), the differences are reduced, but still a 
difference of 7% and 13% is observed.  

Combining DCC Access and DCC Facilities generally 
improves the object perception ratio compared with only 
using DCC Access for all the techniques considered (Figure 
7c and d). A significant increase of the object perception 
ratio is observed especially for LARM and RMLA when 

DCC Facilities is used with the Reactive approach because 
the lower number of CPMs dropped. DCC Facilities helps 
alleviating the synchronization problem observed with DCC 
Access Reactive even when the baseline generation rules are 
considered (Figure 7a and Figure 7c). On the other hand, 
similar results are obtained with and without DCC Facilities 
when using DCC Access Adaptive (Figure 7b and Figure 
7d). The main difference is that the use of DCC Facilities 
reduces significantly the CPM generation rate of the baseline 
generation rules, reduces the dropped CPMs and increases 
the CPM size. This improves the perception achieved with 
the baseline generation rules (Figure 7d), which in fact 
achieves a higher perception than LARM when DCC 
Facilities is used. eRMLA increases the distance at which an 
object perception ratio of 0.95 is achieved by 44% compared 
to LARM and by 25% compared to RMLA with DCC Access 

 
(a) DCC Access (Reactive) (b) DCC Access (Adaptive) 

 
(c) DCC Access (Reactive) + Facilities (d) DCC Access (Adaptive) + Facilities 

Figure 7. Object perception ratio as a function of the distance between the detected object and the vehicle receiving the CPM for 
different DCC configurations when CAMs and CPMs are transmitted on the same channel in the high traffic density scenario. 

 

   
(a) DCC Access  (b) DCC Access + DCC Facilities 

Figure 8. Average information age for CPMs for different DCC configurations when CAMs and CPMs are transmitted on the same 
channel in the high traffic density scenario. 
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Reactive and Facilities. This increment is 6% and 10% with 
the Adaptive approach. 

Figure 8 reports the average information age obtained 
with baseline generation rules and the proposed techniques 
with all DCC configurations when both CAMs and CPMs 
are transmitted on the same channel. The figure shows in 
percentage the difference between the baseline and each of 
the proposed techniques. The transmission of CAMs in the 
same channel increases the information age for all the 
techniques and DCC configurations, compared to the 
scenario without CAMs (Figure 6), because CAMs increase 
the channel load. When only DCC Access is used (Figure 
8a), the baseline generation rules slightly reduces the 
information age compared with the proposed techniques, but 
this is achieved at the expense of a lower object perception 
ratio (Figure 7). In this case, the information age obtained by 
eRMLA is around 5ms (or 4%) higher than LARM and 
RMLA with DCC Access Reactive, but around 7ms (or 8%) 
lower with Adaptive. The use of DCC Access Reactive 
clearly shows the challenges of DCC to support the 
considered V2X services given that the average information 
age achieved is higher than 120ms. 

When DCC Facilities is combined with DCC Access 
(Figure 8b), the information age is in general reduced, 
especially when using the proposed techniques. In this 
scenario, when the Reactive approach is considered, LARM 
and eRMLA reduce the average information age compared 
to the baseline generation rules by around 51%. With the 
Adaptive approach, eRMLA reduces the average 
information age by a factor of 5 compared to the baseline 
generation rules (81% reduction), and by a factor of 4 
compared to LARM and RMLA, approximately. This is the 
case because eRMLA generates CPMs at a lower frequency, 
and most of the time the DCC Access gate is open when a 
CPM is generated. This result demonstrates that eRMLA can 
facilitate the transmission of CPMs with a low latency even 
under the presence of CAMs. 

 

7. Discussion 

The results obtained have shown important trade-offs 
among the proposed techniques. In the scenario without 
DCC, eRMLA provides the highest perception for all traffic 
densities (10%-42% higher than the baseline and 12%-27% 
higher than the other proposed techniques). It also reduces 
the channel load (around 50% lower than the baseline and 
1%-12% lower than the other proposed techniques). It is true 
that eRMLA has a higher average information age compared 
to LARM and RMLA when DCC is not applied. But in this 
scenario the increase of the information age obtained by 
eRMLA is in the order of the packet duration (0.2ms-0.8ms 
higher), and can be considered almost negligible considering 
its gains in terms of perception and channel load.  

The results obtained also show that DCC has an 
important impact on the CPM generation and transmission.  
The performance differences depend significantly on the 
DCC configuration. In terms of perception, the best results 
are always obtained by eRMLA, independently of the DCC 
configuration, and whether CAMs are transmitted in the 
same channel or not. Without CAMs, eRMLA increases the 

perception by 17%-325% compared to the other proposed 
techniques. With CAMs, this improvement is between 6% 
and 120%, depending on the DCC configuration. 

The results obtained in terms of information age require 
a more detailed analysis. When the load is sufficiently low 
so that DCC is not activated (in the scenario without CAMs 
and with the Adaptive approach), the results obtained match 
with the results without DCC for the proposed techniques; 
that is, eRMLA obtains an information age that is 0.2ms-
0.8ms higher than the other proposed techniques, which 
cannot be considered a significant increase given its gains in 
terms of perception. When the load increases and DCC is 
activated, eRMLA is able to achieve a lower information age 
than the other proposed techniques (reductions by 56%-96% 
without CAMs and up to 70% with CAMs), except in one 
DCC configuration (DCC Access Reactive and Facilities 
with CAMs and CPMs in the same channel). In this specific 
DCC configuration, eRMLA improves significantly the 
perception, but increases the information age by 4ms (3%) 
compared to the other proposed techniques. This DCC 
configuration is very specific because it generates the highest 
information age for all the techniques (higher than 120ms), 
clearly showing the need to evolve the existing DCC 
framework (e.g., synchronizing the message generation with 
the gatekeeper at the access layer to achieve low information 
age).  

In summary, the results obtained demonstrate the 
eRMLA achieves best overall performance and is capable to 
enhance the perception of connected automated vehicles, 
independently of the traffic density, DCC configuration and 
coexistence with other messages in the same channel. 

8. Conclusions 

This paper has proposed and evaluated three techniques 
designed to improve the effectiveness of cooperative or 
collective perception services for connected and automated 
vehicles while ensuring their scalability. The proposed 
techniques combine, for the first time, baseline message 
generation rules for cooperative perception messages with 
mechanisms to control the redundancy and to efficiently 
organize the information about detected objects. The study 
has evaluated the effectiveness and scalability of the 
proposed techniques under different traffic density scenarios 
and considering the integration with congestion control 
mechanisms and the coexistence of cooperative perception 
messages and awareness messages. Their performance has 
been compared with baseline message generation rules and 
two existing techniques, all of them part of ETSI’s 
specifications. The conducted evaluation has demonstrated 
that the proposed techniques improve the perception and 
reduce the channel load in most of the scenarios evaluated. 
They are thus able to improve the scalability of cooperative 
perception services and leave more available bandwidth for 
other V2X services. The proposed techniques also reduce the 
information age compared to the baseline in all the scenarios 
considered, except in one congestion control configuration 
that is not able to efficiently support cooperative perception 
messages and awareness messages.  

The conducted evaluation has demonstrated that the 
most effective way to combine baseline collective perception 
generation rules with redundancy control and look-ahead 
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mechanisms is by first applying the generation rules, then 
redundancy control and finally the look-ahead mechanisms 
to all detected objects, including those initially removed by 
the redundancy control scheme. This combination, referred 
to eRMLA in this study, achieves the highest perception and 
lowest channel load in all the scenarios and configurations 
evaluated thanks to a better balance between object 
redundancy and communications overhead. It is also able to 
reduce the information age in most of the scenarios and 
congestion control configurations; it only produces a 
relatively small increase in some corner cases, which it is 
considered acceptable given its gains in terms of perception 
and channel load.  

As future work, one potential way to further improve 
the combination method proposed in this study would be to 
incorporate machine learning techniques. Machine learning 
could improve the identification of redundant objects and 
better support the anticipation of objects for the look-ahead 
mechanism. The obtained results have also demonstrated the 
need to improve the operation of DCC Access and Facilities 
to reduce the information age. This could be addressed, for 
example, by synchronizing the gate-opening times at the 
Access layer with the message generation at the Facilities 
layer. 
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