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Abstract— Future wireless networks must enhance their 
capacity to sustain deterministic service levels and support 
emerging time-sensitive services in key verticals. The ability to 
guarantee bounded latencies heavily depends on efficient radio 
resource management. Configured Grant (CG) scheduling can 
reduce latency by pre-allocating resources, but its effectiveness 
and efficiency decrease under variable traffic patterns. This 
study presents a novel predictive CG scheduling scheme that 
pre-allocates resources based on traffic predictions while 
accounting for prediction inaccuracies. By considering these 
inaccuracies, the scheme significantly improves the ability to 
meet bounded latency requirements, which are essential for 
supporting deterministic service levels. Our evaluations show 
that the proposed scheme significantly enhances the capacity to 
support deterministic service levels while improving resource 
utilization, even in scenarios with variable and mixed traffic 
flows with diverse requirements. 

Keywords—scheduling, configured grant, predictive, 
deterministic, time-sensitive, 5G, 6G. 

I. INTRODUCTION 
5G networks were designed to support ultra-reliable low-

latency communications (URLLC) and new verticals such as 
smart mobility and manufacturing. However, the increasing 
digitalization and automation in these verticals introduce new 
challenges to support deterministic services with stringent 
bounded latency requirements. To meet these demands, future 
networks must support deterministic communications while 
accommodating mixed traffic flows with varying 
characteristics and diverse QoS (Quality of Service) 
requirements. The ability to sustain deterministic service 
levels relies heavily on efficient and effective radio resource 
management, including advanced scheduling mechanisms 
that can anticipate demands and dynamically schedule 
transmissions in mixed traffic environments. 

5G and beyond can reduce latencies through semi-static 
scheduling schemes, which include Configured Grant (CG) 
for uplink (UL) transmissions and Semi-Persistent 
Scheduling (SPS) for downlink (DL) transmissions. Semi-
static scheduling eliminates the need to send a Scheduling 
Request (SR) and/or wait for a Scheduling Grant before 
transmitting a data packet, instead pre-allocating resources to 
nodes so they can immediately transmit packets upon 
generation. Semi-static scheduling has proven highly 
effective in ensuring low transmission latencies for periodic 
traffic with fixed packet sizes. However, its effectiveness and 
efficiency decrease in scenarios where packet sizes vary, 
message periodicity fluctuates or does not align with the 

periodicity of resource allocation [1], or when multiple traffic 
flows with different periodicities coexist [2]. To address these 
inefficiencies, current approaches explore predictive 
scheduling mechanisms that anticipate traffic demands. 
Studies such as [3] propose semi-static scheduling schemes 
that pre-allocate or reserve resources based on traffic 
predictions. However, such pre-allocations are prone to 
inefficiencies due to prediction inaccuracies and the inherent 
stochasticity of wireless systems. These inefficiencies can 
negatively impact overall system capacity and compromise 
the ability to guarantee bounded latency requirements for 
deterministic services [3]. In this context, this work proposes 
a novel predictive Configured Grant (CG) scheduling scheme 
that accounts for inaccuracies in traffic predictions when pre-
allocating radio resources based on anticipated traffic 
demands. The proposed CG scheduling scheme is designed to 
support deterministic service levels in scenarios with mixed 
traffic flows and diverse QoS requirements. Rather than 
minimizing transmission latency, the scheme aims to 
maximize the percentage of transmissions that meet their 
bounded latency requirements. By leveraging predicted traffic 
information along with potential prediction inaccuracies, the 
scheme pre-allocates resources with a high likelihood of 
meeting bounded latency requirements. Our evaluation 
demonstrates that the proposed predictive CG scheduling 
scheme significantly improves both the capacity to support 
deterministic service levels and resource utilization efficiency 
under mixed traffic flows with diverse requirements 
compared to a standard CG scheduling. 

II. STATE OF THE ART 
The 3GPP standard [4] defines two types of Configured 

Grant (CG). In Type 1, the uplink grant is configured through 
Radio Resource Control (RRC) signaling. In Type 2, RRC 
signaling only defines the grant's periodicity, while the uplink 
grant is signaled, activated, and deactivated using the PDCCH 
control channel, similar to Semi-Persistent Scheduling (SPS). 
CG Type 2 and SPS offer greater flexibility, enabling the 
dynamic adaptation of the configured grant based on changes 
in network or traffic conditions. Several studies have explored 
methods to enhance the adaptability of semi-static scheduling, 
improving its effectiveness while optimizing radio resource 
utilization. For example, [5] uses offline and online learning 
to dynamically adjust resource allocations in CG scheduling. 
The proposal continuously monitors parameters such as node 
buffer status and wasted resources to dynamically determine 
an optimal allocation strategy that minimizes the cumulative 
buffer status of UEs while ensuring a fair distribution of 
resources. The proposal reduces latency under stable traffic 
and channel conditions but faces challenges in highly 
dynamic environments. In [6], the authors propose a learning-
based approach to periodically determine and adjust the 
allocation of radio resources for CG scheduling. The study 
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focuses on using CG with shared resources for uplink traffic 
in a massive Machine-Type Communication (mMTC) 
scenario with heterogeneous MTC devices. The proposed 
scheme organizes nodes into priority-based groups based on 
their requirements and dynamically adjusts resource 
allocations according to the estimated traffic arrival rate and 
priority level. Similarly, [7] explores a scenario where mMTC 
and eMBB nodes share radio resources. mMTC nodes sense 
transmissions from eMBB nodes to detect patterns and use 
reinforcement learning to autonomously select radio 
resources in a grant-free scheduling framework, thereby 
avoiding collisions with eMBB transmissions. Despite the 
gains achieved, shared resources can compromise the ability 
to meet bounded latency deadlines for deterministic services, 
particularly as traffic demand increases.  

Several studies propose leveraging predictive techniques 
to forecast traffic demand and proactively schedule resource 
allocations. For instance, [8] introduces a scheduling scheme 
that assigns radio resources within a scheduling window of m 
consecutive slots to the highest-priority nodes. A node’s 
priority is determined based on factors such as the amount of 
buffered data, the predicted data generation in the next 
scheduling period of m slots, and the predictive average data 
rate for the upcoming m slots. In [9], the authors propose 
using proactive grants to allocate resources based on 
predictions of the data different nodes are expected to 
generate. A first approach predicts data sizes and allocates the 
necessary radio resources for each user in every slot. While 
this minimizes latency, it leads to over-reserving radio 
resources that may go unused. A second approach enhances 
efficiency by predicting both data sizes and traffic generation 
times. However, inaccuracies in traffic predictions can cause 
some packets to experience increased latency. In this context, 
this study progresses the state-of-the art with a novel 
predictive CG scheduling scheme that pre-allocates resources 
based on traffic predictions and prediction inaccuracies. By 
considering these inaccuracies, the scheme improves the 
ability to meet bounded latency requirements, and hence 
support deterministic services.  

III. PREDICTIVE CONFIGURED GRANT SCHEDULING 
We consider a scenario with N nodes, where each node i 

(i=0, 1,…,N-1) generates data with an inter-packet generation 
time characterized by a mean value pi and a standard deviation 𝜎i

t. The packet size is also characterized by a mean value si 
and a standard deviation 𝜎i

s . Each packet has a latency 
requirement Li. Without loss of generality, we consider pi = p 
ms for all N nodes. The proposed predictive CG scheduler 
determines the radio resources to be allocated for all nodes 
within a scheduling interval of p ms, and scheduling 
decisions can be updated at every scheduling interval p. 
Resources are proactively pre-allocated to maximize the 
likelihood of satisfying the requirements of each 
transmission. To achieve this, a predictor forecasts the 
generation time tiො and size siෝ of the next packet pkti for each 
node within the upcoming scheduling interval p. The 
scheduler then calculates the number of resources required 
for transmitting each packet pkti, considering not only the 
predicted size siෝ  but also a margin Δsi to account for 
prediction inaccuracies; Δsi can be set equal to the standard 
deviation 𝜎i

s  or other value related to the prediction 
inaccuracy. We assume a NR radio interface where a radio 
resource is defined by a Resource Block (RB) in the 
frequency domain and a slot in the time domain. The 

scheduler estimates the number of RBs needed for pkti as  
Ri = f(siෝ+Δsi, mcsi), where f(∙) is a function that determines the 
number of RBs required to transmit a packet of size siෝ+Δsi 
using a Modulation and Coding Scheme (MCS) mcsi 
following [4]. The proposed scheduler seeks to allocate Ri 
RBs for pkti within the allocation window wi=w(tiini, tiend), 
where tiini = tiො +Δti and tiend =  tiො -Δti+Li, tiො  is the predicted 
generation time of pkti and Δti is a time margin to account for 
prediction inaccuracies of the generation time. The wi ensures 
that a packet generated between tiො -Δti and tiො +Δti can be 
transmitted within its latency requirement Li, as shown in Fig. 
1. The scheduler identifies wi for all packets pkti within the 
scheduling interval p, and searches for a scheduling solution 
that meets the latency requirements of the maximum possible 
number of packets. We assume a mixed traffic flow scenario 
where packets may have different latency requirements. 

The operation of the proposed predictive CG scheduling 
scheme is presented in Algorithm I. The scheme defines the 
set Φ, which is initialized with all the packets pkti scheduled 
for the next scheduling interval p. The scheduler starts 
processing packets with the shortest latency requirements 
(line 2 in Algorithm I). For each packet pkti, the scheduler first 
searches for available RBs within its allocation window wi 
that do not overlap with the allocation window wj of other 
packets pktj (∀j≠i) (line 3 of Algorithm I). We define this non-
overlapping area of wi as wi

no = w(tino-i, tino-e). If the number of 
available RBs Ri

no within wi
no is smaller than Ri (Ri = f(siෝ+Δsi, 

mcsi)), then pkti is added to an auxiliar set Ө as a pending 
packet awaiting RB allocation. Conversely, if Ri

no ≥ Ri, the 
scheduler allocates Ri RBs to pkti within wi

no (lines 4-9 of 
Search_in_non-overlapping_area). If multiple allocation 
options exist, the scheduler follows the policy outlined in 
allocate_RB. In particular, if wi does not overlap with any 
other wj (∀j≠i), the scheduler allocates RBs for pkti at the 
center of wi. This increases robustness against inaccuracies in 
the estimated generation time of pkti. If wi partially overlaps 
with the allocation window wj of other packets, the scheduler 
prioritizes allocating resources from the boundary of wi

no that 
is furthest from the respective limits tiini  or tiend  of wi. This 
ensures that packets generated with a deviation larger than Δti 
from the estimated time tiො  can still meet their latency 
requirements. Once pkti receives RBs, it is removed from Φ 
(line 10 in Search_in_non-overlapping_area), and wi is no 
longer considered when allocating RBs for other packets pktj 
(j≠i). After completing the allocation process for all packets 
in Φ, the process in lines 2-13 in Search_in_non-
overlapping_area is repeated for the remaining packets in Ө. 
We should note that a packet pktj that previously had Ri

no<Ri 
might now have Ri

no≥ Ri after removing from Φ the packets 
pktj that successfully received RBs. This iterative process 
continues until no further packets can be allocated the 
required Ri resources within non-overlapping areas.  

For packets that cannot be assigned the required 
resources Ri within non-overlapping areas, the scheduler 
follows Search_in_overlapping_area (line 5 in Algorithm I). 
The process begins with packets that have the lowest latency 
requirements. For each packet pkti remaining in Φ after 

 
Fig. 1. Allocation window wi for packet pkti. 
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Search_in_non-overlapping_area, the scheduler checks 
whether there are sufficient RBs within wi to satisfy Ri (Ri = 
f(siෝ+Δsi, mcsi)). If so, the scheduler allocates Ri RBs within wi 
to pkti (lines 3-4 in Search_in_overlapping_area). If there are 
insufficient RBs, the size of wi is iteratively augmented by 
Δti until there are sufficient RBs available within wi to satisfy 
Ri, or wi reaches its maximum possible size Li+2⋅Δti (lines 5-
7 in Search_in_overlapping_area). The maximum size is 
defined so that it is still possible to meet the latency 
requirement Li if the packet is generated at tiො+Δti or tiො-Δti. If 
wi reaches its maximum allowed size, the scheduler reduces 
the number of RBs to allocate for pkti to match only the 
predicted size (i.e., Ri is updated as Ri = f(siෝ , mcsi)), and 
searches again for Ri RBs in wi for pkti (lines 8-10 in 
Search_in_overlapping_area). Increasing wi reduces the 
likelihood of meeting the latency requirement for packets 
that deviate significantly from their expected generation time 
tiො, but the requirement can still be satisfied in some cases. For 
example, consider the case where tiend is equal to tiend= tiො+Li, 
and the scheduler finds RBs for pkti at the end of wi as 
illustrated in Fig. 2. In this case, the latency requirement Li 
cannot be met if pkti is actually generated before tiො  as 

illustrated in Fig. 2, but it can still be satisfied if pkti is 
generated after tiො.  

IV. TRAFFIC CHARACTERIZATION AND PREDICTION 
The proposed predictive CG scheduler pre-allocates 

resources for future traffic demands by leveraging predicted 
traffic information while accounting for potential prediction 
inaccuracies. To evaluate our proposal, we consider a 6G-
envisioned autonomous driving scenario in which sensor data 
generated by an autonomous vehicle is sent to the network for 
processing at the edge [10]. Communications must meet a 
bounded latency deadline to ensure that offloading processing 
workloads to the network does not disrupt vehicle operations. 
For our evaluation, we use realistic sensor data generated by 
autonomous vehicles through a Connected and Automated 
Mobility (CAM) platform [11]. This platform integrates 
realistic sensing and autonomous driving (AD) capabilities 
using the open-source CARLA and AUTOWARE software. 
We have configured the autonomous vehicle in the CAM 
platform with a full suite of Level 3 (L3) AD sensors, 
including five cameras and five radars mounted on the top, 
front, rear and sides of the vehicle. Each sensor is considered 
a data source or node in our evaluation, requiring offloading 
of its traffic to the network. The offloaded traffic includes 
detected objects such as vehicles, obstacles and pedestrians. 
Sensors generate raw data at periodic intervals, which is then 
processed by a perception module to extract detected objects. 
We have collected extensive datasets of processed sensor 
packets including their size and timestamp from realistic 
urban environments (Fig. 3). 

The different sensors have a sampling rate of 20 Hz, 
collecting data every 50 ms. Then, the object detection 
algorithm introduces a processing delay that depends on the 
driving scenario and the number of detected objects. We have 
characterized this processing delay for each sensor, showing 
a standard deviation ranging from 1.47 to 1.80 ms. Following 
the nomenclature used in Section III, the proposed predictive 
CG scheme considers 50 ms as the inter-packet generation 
time p, tiො is estimated as ti 0+p where ti 0 is the generation time 
of the first packet for each sensor i of the N=10 sensors, and 
Δti is set to the characterized standard deviation value 𝜎i

t. 

The size of processed sensor packets varies significantly, 
as shown in Fig. 3, since it depends on the number of objects 

Algorithm I: Predictive CG Scheduling 
Input: set Φ of packets to schedule, tiො, Δti, siෝ, Δsi, Li ∀i 
1. Define for each pkti in Φ: Ri = f(siෝ+Δsi, mcsi),  

wi=w(tiini, tiend), tiini= tiො+ Δti, tiend= tiො+ Li - Δti 
2. Sort packets in Φ by Li 
3. Call Φ=Search_in_non-overlapping_area(Φ) 
4. If Φ ≠ Ø (there are packets without RBs) 
5.    Call Search_in_overlapping_area(Φ) 
6. End procedure 
Procedure I: Search_in_non-overlapping_area(Φ) 
1. Set Ө = Ø (Ө is a set with pending packets) 
2. Repeat 
3.    M = size(Φ) 
4.    For each pkti in Φ 
5.       Identify non-overlapping area wi

no = w(tino-i, tino-e)  
      between wi and wj ∀j≠i and pktj in Φ 

6.       Ri
no = available RBs within wi

no  
7.       If Ri

no ≥ Ri  
8.          Allocate Ri RBs in wi

no to pkti: call allocate_RB 
9.       Else → pkti is included in Ө  
10.       Removed pkti from Φ 
11.    End For 
12.    Φ = Ө, Ө = Ø 
13. Until size(Φ) == M 
14. Return Φ and end procedure 
Procedure II: allocate_RB(pkti, wi

no=w(tino-i,tino-e), Ri, tiini,tiend) 
1. If tino-i== tiini & tino-e== tiend  
2.     Allocate Ri RBs in the center of wi

no 
3. Elseif tino-i-tiini > tiend - tino-e  
4.     Allocate Ri RBs in wi

no starting from tino-i 
5. Else 
6.     Allocate Ri RBs in wi

no ending at tino-e 
7. End procedure 
Procedure III: Search_in_overlapping_area(Φ) 
1. For each pkti in Φ 
2.    Repeat 
3.       R = available RBs within wi= w(tiini, tiend) 
4.       If R ≥ Ri → Allocate Ri RBs in wi to pkti  
5.       Elseif odd iteration → tiend=tiend+Δti  
6.       If even iteration → tiini= tiini-Δti  
7.    Until pkti receives RBs or wi==w(tiො-Δti, tiො+Li+Δti) 
8.    If pkti has not received RBs & Ri > f(siෝ, mcsi) 
9.       Ri = f(siෝ, mcsi), tiini= tiො+ Δti, tiend= tiො+ Li - Δti 
10.       Goto line 2 
11. End For  
12. End procedure 

 
Fig. 3. Sample trace of processed sensor data packets. 

 
Fig. 2. Example of packet pkti generated at ti for which its latency 

requirement Li is satisfied when ti < tiො but not when ti < tiො. 
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detected in the driving scenario. To predict the size of future 
processed sensor packets, we implemented a predictor based 
on a Long Short-Term Memory (LSTM) network using 
regression-based supervised learning. LSTM networks are 
particularly suited for tasks involving sequential or time-
series data, where the order and context of input elements are 
relevant. This includes tasks where dependencies between 
data points over time need to be learned, making it suitable 
for predicting autonomous vehicle sensor data since the size 
of each packet is tied to past packets and sensor behaviors. 
The hyper-parameters used for the configuration of the LSTM 
are summarized in Table I and were optimized to minimize 
the Mean Absolute Error (MAE), which quantifies the 
average magnitude of prediction errors as MAE=∑ | si–P

i=1
siෝ|/P, where P represents the number of predicted packets, si 
is the actual packet size, and siෝ is the predicted packet size. 
We used a dataset containing 9780 samples, with 60% 
allocated for training the LSTM, 20% for validation, and the 
remaining 20% for testing. The LSTM network is configured 
to predict the size of the next ten packets, i.e. the processed 
sensor packets generated by each of the N=10 sensors within 
the period p=50 ms. Fig. 4 shows the CDF (cumulative 
distribution function) of the absolute error for the prediction 
of the first, fifth and tenth packets. The figure illustrates the 
magnitude of possible prediction inaccuracies and reinforces 
the need to account for such inaccuracies when reserving 
resources based on predicted traffic demands. As described in 
Section III, the proposed predicted CG scheduling scheme 
accounts for the inaccuracy of the predicted packet size  siෝ 
when determining the resources that should be pre-allocated 
to each pkti to minimize the impact of prediction errors on the 
capacity to meet the latency requirements. 

TABLE I. LSTM HYPER-PARAMETERS 
Parameter Value Parameter Value 

Sequence Length 150 Number of layers 3 (units: 256,128,64) 
Batch Size 32 Features Per Sample 6 
Dropout 0.1 Epochs 100 
Optimizer Adam Scaling Method Min-Max Scaling 
Learning rate 0.001 Number of Outputs 10 

 

 
Fig. 4. CDF of the absolute prediction error (|si –  siෝ|). 

V. EVALUATION AND DISCUSSION 
This section compares the performance of the proposed 

predictive CG scheduler (PCG) against a reference (non-
predictive) 5G CG scheduling scheme. The reference scheme 
periodically allocates RBs for transmitting packets generated 
by each node. Following [12], the reference scheme allocates 
RBs to minimize the latency of each packet. For a fair 
comparison with PCG, the reference scheme uses an 
allocation period p=50 ms and seeks to allocate RBs to pkti 
within wi = w(tiini, tiend) with tiini= tiො+Δti, tiend= tiො-Δti+Li, and 
Δti=𝜎i

t, which ensures that a packet generated between tiො-Δti 
and tiො+Δti can be transmitted within its latency requirement Li. 
The reference scheme allocates the amount of RBs necessary 
to transmit packets of size Si. We test different configurations 

 
1 We should note that the transmissions that PCG cannot satisfy correspond 
to packets with a size larger than siෝ  + Δsi. In this case, the number of 

of the reference scheme where Si is established based on the 
most frequent value of the packet sizes, i.e., the mode of the 
packet size -mode(si)- (C1 configuration), or on the 80th, 90th, 
95th, and 99th percentiles of the packet size (C2, C3, C4 and 
C5 configurations for the reference scheme), respectively. 
The percentile value is represented by the function Px(si), 
where x represents the desired percentile. We also evaluate 
different configurations of the proposed PCG scheduler to 
assess the impact of the selection of the prediction inaccuracy 
Δsi. PCG is evaluated with values of Δsi equal to the standard 
deviation of the predicted size 𝜎௜s (C1 configuration for PCG), 
or equal to the 80th, 90th, 95th, or 99th percentiles of the 
absolute error of the prediction, i.e., Px(AE) with x=80, 90, 95 
and 99, and AE=|si–siෝ| (C2, C3, C4 and C5 configurations for 
PCG, respectively). Table II shows the evaluated 
configurations for PCG and the reference schemes. In 
addition, we also evaluate a predictive CG scheduler that 
allocates RBs for packet transmissions following a scheduling 
policy similar to PCG but only considering the predicted 
packet size siෝ  and not taking into account prediction 
inaccuracies. 

TABLE II. EVALUATED CONFIGURATIONS FOR PCG AND REF. 

Scheduler Configurations 
C1 C2 C3 C4 C5 

PCG Δsi = 𝜎௜s Δsi=P80(AE) Δsi=P90(AE) Δsi =P95(AE) Δsi=P99(AE) 
Reference Si=mode(si) Si =P80(si) Si = P90(si) Si = P95(si) Si = P99(si) 

 

The performance of the proposed PCG scheme and the 
reference scheme is evaluated considering a 5 MHz cell 
bandwidth, a 30 kHz NR subcarrier spacing (SCS) [4] and a 
MCS11 (Modulation and Coding Scheme) to balance 
between robustness and spectral efficiency; similar trends 
have been observed for other configurations. We consider a 
mixed traffic flow scenario with latency requirements derived 
from 3GPP specifications for enhanced V2X scenarios [13]. 
We consider that 50%, 25% and 25% of the packets must be 
transmitted within a maximum latency of 50, 20 and 10 ms, 
respectively; other scenarios with mixed traffic flows and 
different latency requirements have also been evaluated, and 
similar trends have been observed. 

Fig. 5 presents the percentage of transmissions that meet 
their latency requirements using the proposed PCG scheme 
and the reference (Ref.) scheme. The performance is shown 
for the different configurations evaluated for each scheme 
following Table II. Fig. 5 shows that PCG significantly 
increases the percentage of packets that meet their latency 
requirements compared to the reference scheme. PCG can 
reach satisfaction levels higher than 87% with all the 
evaluated configurations, while the reference scheme cannot 
surpass a 64% satisfaction level regardless of the 
configuration used. Fig. 5 also reports the performance 
achieved with a predictive configured grant scheme that does 
not consider prediction inaccuracies and pre-allocates 
resources based only on the predicted packet size siෝ. In this 
case, only about 64% of packets meet their latency 
requirement (similar to the reference scheme) compared with 
a satisfaction level of 92.4% and 98.9% with the PCG when 
Δsi=𝜎i

s (C1) and Δsi=P99(AE) (C5) respectively. These results 
strongly highlight the importance of accounting for prediction 
inaccuracies in the design of predictive scheduling schemes 
capable of supporting deterministic communications1.   

allocated RBs is insufficient for transmitting these packets in time to meet 
their latency requirement. 



Fig. 5 shows that the proposed PCG increases its 
performance as the prediction inaccuracy Δsi is set equal to 
higher percentile values of the prediction’s absolute error. 
Similarly, the reference scheme increases its satisfaction level 
when it allocates RBs based on the highest percentiles of the 
packet size. However, these improvements come at the 
expense of pre-allocating a larger number of RBs per packet 
than actually needed, thus reducing resource efficiency. This 
is illustrated in Fig. 6, where Fig. 6.a represents the percentage 
of RBs allocated for the transmission of packets and Fig. 6.b 
represents the percentage of pre-allocated RBs that are 
actually unutilized. Fig. 6.a shows that the percentage of 
allocated RBs increases for PCG when Δsi is set equal to 
higher percentile values of the prediction’s absolute error, and 
increases for the reference scheme when allocating RBs based 
on the highest size percentiles. However, PCG pre-allocates 
in general a lowest number of RBs than the reference scheme 
while achieving higher satisfaction levels (Fig. 5). In addition, 
PCG results in a significantly lower percentage of non-
utilized RBs compared to the reference scheme, which 
highlights its highest resource efficiency. 

Following the URLLC principles in 5G, the reference 
scheme focuses on minimizing the transmission latency. On 
the other hand, PCG has been designed to support 
deterministic communications in beyond 5G networks, and 
hence prioritizes maximizing the number of transmissions 
that meet their latency requirements. Fig. 7 plots the 
cumulative distribution function (CDF) of the latency 
experienced by packets with 10, 20, and 50 ms latency 
requirements, respectively. The figure shows that packets 
with the most stringent latency requirement (10 ms) 
experience the lowest latency values when using the PCG 
scheme. On the other hand, PCG slightly increases the latency 
of packets with more relaxed latency constraints. This is 
particularly the case for packets with a 20 ms requirement as 
these packets often compete for the same RBs as the packets 
that require 10 ms latency. PCG intentionally delays the 

transmission of packets with more relaxed latency 
requirements, while still meeting their latency deadline, to 
ensure that packets with tighter deadlines can be transmitted 
in time. In contrast, a scheduler that seeks minimizing the 
transmission latency (Ref.) does not leverage varying latency 
requirements in mixed traffic flows to increase the percentage 
of satisfied transmissions, and the latency experienced 
increases uniformly up to the maximum allowed latency. 

VI. CONCLUSIONS 
This study presents a novel predictive configured grant 

scheduling scheme designed to support deterministic 
communications in beyond 5G networks. The proposed 
predictive CG scheduling scheme pre-allocates resources 
based on traffic predictions and prediction inaccuracies with 
the objective to maximize the percentage of packets 
transmitted within their bounded latency requirements. The 
evaluation shows that the proposed predictive CG scheme 
significantly increases the percentage of satisfied 
transmissions compared to a 5G CG scheduler while pre-
allocating less resources and using them more efficiently. Our 
evaluation has also demonstrated the importance of 
accounting for prediction inaccuracies in the scheduling 
process to improve the ability to meet bounded latency 
requirements and hence support deterministic services in 
beyond 5G networks. 
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Fig. 5. Percentage (%) of transmissions meeting their latency requirements. 

 

 
a) Allocated RBs. 

 
b) Allocated but non-used RBs. 

Fig. 6. Percentage of allocated RBs and percentage of allocated RBs that are 
non-used for packet transmissions. 

 
Fig. 7. CDF of the latency experienced by packets with 10, 20 and 50 ms 

latency requirements with PCG and the reference scheme. 
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