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Abstract— Future wireless networks must enhance their
capacity to sustain deterministic service levels and support
emerging time-sensitive services in key verticals. The ability to
guarantee bounded latencies heavily depends on efficient radio
resource management. Configured Grant (CG) scheduling can
reduce latency by pre-allocating resources, but its effectiveness
and efficiency decrease under variable traffic patterns. This
study presents a novel predictive CG scheduling scheme that
pre-allocates resources based on traffic predictions while
accounting for prediction inaccuracies. By considering these
inaccuracies, the scheme significantly improves the ability to
meet bounded latency requirements, which are essential for
supporting deterministic service levels. Our evaluations show
that the proposed scheme significantly enhances the capacity to
support deterministic service levels while improving resource
utilization, even in scenarios with variable and mixed traffic
flows with diverse requirements.

Keywords—scheduling,  configured grant,
deterministic, time-sensitive, 5G, 6G.
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I. INTRODUCTION

5G networks were designed to support ultra-reliable low-
latency communications (URLLC) and new verticals such as
smart mobility and manufacturing. However, the increasing
digitalization and automation in these verticals introduce new
challenges to support deterministic services with stringent
bounded latency requirements. To meet these demands, future
networks must support deterministic communications while
accommodating mixed traffic flows with varying
characteristics and diverse QoS (Quality of Service)
requirements. The ability to sustain deterministic service
levels relies heavily on efficient and effective radio resource
management, including advanced scheduling mechanisms
that can anticipate demands and dynamically schedule
transmissions in mixed traffic environments.

5G and beyond can reduce latencies through semi-static
scheduling schemes, which include Configured Grant (CG)
for wuplink (UL) transmissions and Semi-Persistent
Scheduling (SPS) for downlink (DL) transmissions. Semi-
static scheduling eliminates the need to send a Scheduling
Request (SR) and/or wait for a Scheduling Grant before
transmitting a data packet, instead pre-allocating resources to
nodes so they can immediately transmit packets upon
generation. Semi-static scheduling has proven highly
effective in ensuring low transmission latencies for periodic
traffic with fixed packet sizes. However, its effectiveness and
efficiency decrease in scenarios where packet sizes vary,
message periodicity fluctuates or does not align with the
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periodicity of resource allocation [1], or when multiple traffic
flows with different periodicities coexist [2]. To address these
inefficiencies, current approaches explore predictive
scheduling mechanisms that anticipate traffic demands.
Studies such as [3] propose semi-static scheduling schemes
that pre-allocate or reserve resources based on traffic
predictions. However, such pre-allocations are prone to
inefficiencies due to prediction inaccuracies and the inherent
stochasticity of wireless systems. These inefficiencies can
negatively impact overall system capacity and compromise
the ability to guarantee bounded latency requirements for
deterministic services [3]. In this context, this work proposes
anovel predictive Configured Grant (CG) scheduling scheme
that accounts for inaccuracies in traffic predictions when pre-
allocating radio resources based on anticipated traffic
demands. The proposed CG scheduling scheme is designed to
support deterministic service levels in scenarios with mixed
traffic flows and diverse QoS requirements. Rather than
minimizing transmission latency, the scheme aims to
maximize the percentage of transmissions that meet their
bounded latency requirements. By leveraging predicted traffic
information along with potential prediction inaccuracies, the
scheme pre-allocates resources with a high likelihood of
meeting bounded latency requirements. Our evaluation
demonstrates that the proposed predictive CG scheduling
scheme significantly improves both the capacity to support
deterministic service levels and resource utilization efficiency
under mixed traffic flows with diverse requirements
compared to a standard CG scheduling.

II. STATE OF THE ART

The 3GPP standard [4] defines two types of Configured
Grant (CG). In Type 1, the uplink grant is configured through
Radio Resource Control (RRC) signaling. In Type 2, RRC
signaling only defines the grant's periodicity, while the uplink
grant is signaled, activated, and deactivated using the PDCCH
control channel, similar to Semi-Persistent Scheduling (SPS).
CG Type 2 and SPS offer greater flexibility, enabling the
dynamic adaptation of the configured grant based on changes
in network or traffic conditions. Several studies have explored
methods to enhance the adaptability of semi-static scheduling,
improving its effectiveness while optimizing radio resource
utilization. For example, [5] uses offline and online learning
to dynamically adjust resource allocations in CG scheduling.
The proposal continuously monitors parameters such as node
buffer status and wasted resources to dynamically determine
an optimal allocation strategy that minimizes the cumulative
buffer status of UEs while ensuring a fair distribution of
resources. The proposal reduces latency under stable traffic
and channel conditions but faces challenges in highly
dynamic environments. In [6], the authors propose a learning-
based approach to periodically determine and adjust the
allocation of radio resources for CG scheduling. The study



focuses on using CG with shared resources for uplink traffic
in a massive Machine-Type Communication (mMTC)
scenario with heterogeneous MTC devices. The proposed
scheme organizes nodes into priority-based groups based on
their requirements and dynamically adjusts resource
allocations according to the estimated traffic arrival rate and
priority level. Similarly, [7] explores a scenario where mMTC
and eMBB nodes share radio resources. mMTC nodes sense
transmissions from eMBB nodes to detect patterns and use
reinforcement learning to autonomously select radio
resources in a grant-free scheduling framework, thereby
avoiding collisions with eMBB transmissions. Despite the
gains achieved, shared resources can compromise the ability
to meet bounded latency deadlines for deterministic services,
particularly as traffic demand increases.

Several studies propose leveraging predictive techniques
to forecast traffic demand and proactively schedule resource
allocations. For instance, [8] introduces a scheduling scheme
that assigns radio resources within a scheduling window of m
consecutive slots to the highest-priority nodes. A node’s
priority is determined based on factors such as the amount of
buffered data, the predicted data generation in the next
scheduling period of m slots, and the predictive average data
rate for the upcoming m slots. In [9], the authors propose
using proactive grants to allocate resources based on
predictions of the data different nodes are expected to
generate. A first approach predicts data sizes and allocates the
necessary radio resources for each user in every slot. While
this minimizes latency, it leads to over-reserving radio
resources that may go unused. A second approach enhances
efficiency by predicting both data sizes and traffic generation
times. However, inaccuracies in traffic predictions can cause
some packets to experience increased latency. In this context,
this study progresses the state-of-the art with a novel
predictive CG scheduling scheme that pre-allocates resources
based on traffic predictions and prediction inaccuracies. By
considering these inaccuracies, the scheme improves the
ability to meet bounded latency requirements, and hence
support deterministic services.

III. PREDICTIVE CONFIGURED GRANT SCHEDULING

We consider a scenario with N nodes, where each node i
(=0, 1,...,N-1) generates data with an inter-packet generation
time characterized by a mean value p; and a standard deviation
a!. The packet size is also characterized by a mean value s;
and a standard deviation g . Each packet has a latency
requirement L;. Without loss of generality, we consider p; = p
ms for all N nodes. The proposed predictive CG scheduler
determines the radio resources to be allocated for all nodes
within a scheduling interval of p ms, and scheduling
decisions can be updated at every scheduling interval p.
Resources are proactively pre-allocated to maximize the
likelihood of satisfying the requirements of each
transmission. To achieve this, a predictor forecasts the
generation time #; and size §; of the next packet pkt; for each
node within the upcoming scheduling interval p. The
scheduler then calculates the number of resources required
for transmitting each packet pkt;, considering not only the
predicted size §; but also a margin As; to account for
prediction inaccuracies; As; can be set equal to the standard
deviation ¢ or other value related to the prediction
inaccuracy. We assume a NR radio interface where a radio
resource is defined by a Resource Block (RB) in the
frequency domain and a slot in the time domain. The

scheduler estimates the number of RBs needed for pkt; as
R;=f(57+As; mcs;), where f{) is a function that determines the
number of RBs required to transmit a packet of size §;+As;
using a Modulation and Coding Scheme (MCS) mcs;
following [4]. The proposed scheduler seeks to allocate R;
RBs for pkt; within the allocation window w=w(£™, £),
where 7" = f.+At; and £"= 7,-At;-+L;, f; is the predicted
generation time of pkt; and At is a time margin to account for
prediction inaccuracies of the generation time. The w; ensures
that a packet generated between #;-Af; and 7;+At can be
transmitted within its latency requirement L;, as shown in Fig.
1. The scheduler identifies w; for all packets pkt; within the
scheduling interval p, and searches for a scheduling solution
that meets the latency requirements of the maximum possible
number of packets. We assume a mixed traffic flow scenario
where packets may have different latency requirements.
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Fig. 1. Allocation window w; for packet pkt;.

The operation of the proposed predictive CG scheduling
scheme is presented in Algorithm I. The scheme defines the
set @, which is initialized with all the packets pkt; scheduled
for the next scheduling interval p. The scheduler starts
processing packets with the shortest latency requirements
(line 2 in Algorithm I). For each packet pkt#;, the scheduler first
searches for available RBs within its allocation window w;
that do not overlap with the allocation window w; of other
packets pkt; (Vj#i) (line 3 of Algorithm I). We define this non-
overlapping area of w; as W} = w(£/°", £/¢). If the number of
available RBs R/’ within w/° is smaller than R; (R;= f(S;+As;
mcs;)), then pkt; is added to an auxiliar set © as a pending
packet awaiting RB allocation. Conversely, if R/* > R,, the
scheduler allocates R; RBs to pk#; within w/° (lines 4-9 of
Search_in_non-overlapping area). If multiple allocation
options exist, the scheduler follows the policy outlined in
allocate RB. In particular, if w; does not overlap with any
other w; (Vj#i), the scheduler allocates RBs for pk#; at the
center of w;. This increases robustness against inaccuracies in
the estimated generation time of pkt;. If w; partially overlaps
with the allocation window w; of other packets, the scheduler
prioritizes allocating resources from the boundary of w}° that
is furthest from the respective limits £" or £ of w;. This
ensures that packets generated with a deviation larger than Az;
from the estimated time 7 can still meet their latency
requirements. Once pkt; receives RBs, it is removed from ®
(line 10 in Search_in_non-overlapping area), and w; is no
longer considered when allocating RBs for other packets pkz;
(j#i). After completing the allocation process for all packets
in @, the process in lines 2-13 in Search in non-
overlapping area is repeated for the remaining packets in ©.
We should note that a packet pkt; that previously had R/°<R;
might now have R}’> R; after removing from @ the packets
pkt; that successfully received RBs. This iterative process
continues until no further packets can be allocated the
required R; resources within non-overlapping areas.

For packets that cannot be assigned the required
resources R; within non-overlapping areas, the scheduler
follows Search_in_overlapping area (line 5 in Algorithm ).
The process begins with packets that have the lowest latency
requirements. For each packet pkt; remaining in @ after



Algorithm I: Predictive CG Scheduling
Input: set @ of packets to schedule, 7, At;, 5, Asi, Li Vi
1. Define for each pkt; in ®: Ri=f(5;+Asi, mcsi),
wi=w(l ), M= T Ati, 7= F+ Li - Aty
Sort packets in ® by L;
Call ®=Search_in_non-overlapping area(®)
If @ # O (there are packets without RBs)
Call Search_in_overlapping area(®)
. End procedure
rocedure I: Search_in_non-overlapping area(®)
Set © =@ (O is a set with pending packets)
Repeat
M = size(D)
For each pkt; in @
Identify non-overlapping area w/® = w(£/°7, £1°)
between w: and w; Vj#i and pkt; in @
R}° = available RBs within w/"°
IfR' >R
Allocate R; RBs in w}° to pkt:: call allocate_RB
. Else — pkti is included in ©
10. Removed pkti from @
11.  End For
12. ®=06,6=0
13. Until size(®) == M
14. Return @ and end procedure
Procedure II: allocate RB(pkti, w!*=w(£!*" %), R;, £" 15"
If l.;_w-i:: l?li & l.;_w-ezz t?’ld
Allocate R; RBs in the center of w}”
Elseif t;lo-i_t;:ni > t;end _ tfm-e
Allocate R; RBs in w/° starting from £/
Else
Allocate R; RBs in w}° ending at /¢
End procedure
rocedure III: Search_in_overlapping area(®)
For each pkt; in ®
Repeat
R = available RBs within wi= w(£", ")
If R > R; — Allocate R; RBs in w; to pkt;
Elseif odd iteration — £"=¢"+Ar;
If even iteration — £= f"_At;
Until pkt; receives RBs or w==w(f;-Ati, f+Li+Aty)
If pkt; has not received RBs & R; > f{§;, mcsi)
Ri = f§; mesi), "= {4 Ati, "=+ Li - Ati
10. Goto line 2
11. End For
12. End procedure
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Search_in_non-overlapping area, the scheduler checks
whether there are sufficient RBs within w; to satisfy R; (R;=
S(5i+As; mes;)). If so, the scheduler allocates R; RBs within w;
to pkt; (lines 3-4 in Search_in_overlapping area). If there are
insufficient RBs, the size of w; is iteratively augmented by
At; until there are sufficient RBs available within w; to satisfy
R;, or w; reaches its maximum possible size L+2-At; (lines 5-
7 in Search_in_overlapping area). The maximum size is
defined so that it is still possible to meet the latency
requirement L; if the packet is generated at #;+A¢; or 7-At;. If
w; reaches its maximum allowed size, the scheduler reduces
the number of RBs to allocate for pkt#; to match only the
predicted size (i.e., R; is updated as R; = f(5; mcs;)), and
searches again for R; RBs in w; for pkt; (lines 8-10 in
Search_in_overlapping area). Increasing w; reduces the
likelihood of meeting the latency requirement for packets
that deviate significantly from their expected generation time
£, but the requirement can still be satisfied in some cases. For
example, consider the case where £ is equal to "= +L;,
and the scheduler finds RBs for pkt; at the end of w; as
illustrated in Fig. 2. In this case, the latency requirement L;
cannot be met if pkt; is actually generated before #; as

[IrB available@RB allocated to pkt, CIRB non-available
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Ppkt; generated at 7, <l L
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Fig. 2. Example of packet pkt; generated at #; for which its latency
requirement L; is satisfied when ¢, < #; but not when <7,

illustrated in Fig. 2, but it can still be satisfied if pk#; is
generated after 7.

IV. TRAFFIC CHARACTERIZATION AND PREDICTION

The proposed predictive CG scheduler pre-allocates
resources for future traffic demands by leveraging predicted
traffic information while accounting for potential prediction
inaccuracies. To evaluate our proposal, we consider a 6G-
envisioned autonomous driving scenario in which sensor data
generated by an autonomous vehicle is sent to the network for
processing at the edge [10]. Communications must meet a
bounded latency deadline to ensure that offloading processing
workloads to the network does not disrupt vehicle operations.
For our evaluation, we use realistic sensor data generated by
autonomous vehicles through a Connected and Automated
Mobility (CAM) platform [11]. This platform integrates
realistic sensing and autonomous driving (AD) capabilities
using the open-source CARLA and AUTOWARE software.
We have configured the autonomous vehicle in the CAM
platform with a full suite of Level 3 (L3) AD sensors,
including five cameras and five radars mounted on the top,
front, rear and sides of the vehicle. Each sensor is considered
a data source or node in our evaluation, requiring offloading
of its traffic to the network. The offloaded traffic includes
detected objects such as vehicles, obstacles and pedestrians.
Sensors generate raw data at periodic intervals, which is then
processed by a perception module to extract detected objects.
We have collected extensive datasets of processed sensor
packets including their size and timestamp from realistic
urban environments (Fig. 3).

The different sensors have a sampling rate of 20 Hz,
collecting data every 50 ms. Then, the object detection
algorithm introduces a processing delay that depends on the
driving scenario and the number of detected objects. We have
characterized this processing delay for each sensor, showing
a standard deviation ranging from 1.47 to 1.80 ms. Following
the nomenclature used in Section III, the proposed predictive
CG scheme considers 50 ms as the inter-packet generation
time p, 7, is estimated as #,"+p where ¢ is the generation time
of the first packet for each sensor i of the N=10 sensors, and
At; is set to the characterized standard deviation value o}.

The size of processed sensor packets varies significantly,
as shown in Fig. 3, since it depends on the number of objects
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Fig. 3. Sample trace of processed sensor data packets.



detected in the driving scenario. To predict the size of future
processed sensor packets, we implemented a predictor based
on a Long Short-Term Memory (LSTM) network using
regression-based supervised learning. LSTM networks are
particularly suited for tasks involving sequential or time-
series data, where the order and context of input elements are
relevant. This includes tasks where dependencies between
data points over time need to be learned, making it suitable
for predicting autonomous vehicle sensor data since the size
of each packet is tied to past packets and sensor behaviors.
The hyper-parameters used for the configuration of the LSTM
are summarized in Table I and were optimized to minimize
the Mean Absolute Error (MAE), which quantifies the
average magnitude of prediction errors as MAE=Y7,| s~
5;|/P, where P represents the number of predicted packets, s;
is the actual packet size, and 5; is the predicted packet size.
We used a dataset containing 9780 samples, with 60%
allocated for training the LSTM, 20% for validation, and the
remaining 20% for testing. The LSTM network is configured
to predict the size of the next ten packets, i.e. the processed
sensor packets generated by each of the N=10 sensors within
the period p=50 ms. Fig. 4 shows the CDF (cumulative
distribution function) of the absolute error for the prediction
of the first, fifth and tenth packets. The figure illustrates the
magnitude of possible prediction inaccuracies and reinforces
the need to account for such inaccuracies when reserving
resources based on predicted traffic demands. As described in
Section III, the proposed predicted CG scheduling scheme
accounts for the inaccuracy of the predicted packet size §;
when determining the resources that should be pre-allocated
to each pkt; to minimize the impact of prediction errors on the
capacity to meet the latency requirements.

TABLE I. LSTM HYPER-PARAMETERS

Parameter Value Parameter Value
Sequence Length 150  [Number of layers 3 (units: 256,128,64)
Batch Size 32 Features Per Sample 6
IDropout 0.1 [Epochs 100
Optimizer Adam [Scaling Method Min-Max Scaling
ILearning rate 0.001  [Number of Outputs 10
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Fig. 4. CDF of the absolute prediction error (|s; — 5;|).

V. EVALUATION AND DISCUSSION

This section compares the performance of the proposed
predictive CG scheduler (PCG) against a reference (non-
predictive) 5G CG scheduling scheme. The reference scheme
periodically allocates RBs for transmitting packets generated
by each node. Following [12], the reference scheme allocates
RBs to minimize the latency of each packet. For a fair
comparison with PCG, the reference scheme uses an
allocation period p=50 ms and seeks to allocate RBs to pkt;
within w; = w(£", ") with "= f+At;, "= §;-At+L;, and
At=c!, which ensures that a packet generated between #-At;
and 7+At; can be transmitted within its latency requirement L;.
The reference scheme allocates the amount of RBs necessary
to transmit packets of size S;. We test different configurations

of the reference scheme where S; is established based on the
most frequent value of the packet sizes, i.e., the mode of the
packet size -mode(s;)- (C1 configuration), or on the 80, 90,
95™ and 99" percentiles of the packet size (C2, C3, C4 and
C5 configurations for the reference scheme), respectively.
The percentile value is represented by the function Py(s;),
where x represents the desired percentile. We also evaluate
different configurations of the proposed PCG scheduler to
assess the impact of the selection of the prediction inaccuracy
As;. PCG is evaluated with values of As; equal to the standard
deviation of the predicted size o; (C1 configuration for PCG),
or equal to the 80™, 90™ 95" or 99" percentiles of the
absolute error of the prediction, i.e., Py(AE) with x=80, 90, 95
and 99, and 4E=|s,—5;| (C2, C3, C4 and C5 configurations for
PCG, respectively). Table II shows the evaluated
configurations for PCG and the reference schemes. In
addition, we also evaluate a predictive CG scheduler that
allocates RBs for packet transmissions following a scheduling
policy similar to PCG but only considering the predicted
packet size §; and not taking into account prediction
inaccuracies.

TABLE II. EVALUATED CONFIGURATIONS FOR PCG AND REF.
Configurations
C1 C2 C3 C4 C5
PCG As;=0f |As=Ps(AE) |As=Po(AE) |As;i=Pos(AE)|As=Poo(AE)
Reference |S=mode(s;)| S;=Pso(s:) | S: = Poo(s;) | Si= Pos(s;) | Si = Poo(s;)

Scheduler

The performance of the proposed PCG scheme and the
reference scheme is evaluated considering a 5 MHz cell
bandwidth, a 30 kHz NR subcarrier spacing (SCS) [4] and a
MCS11 (Modulation and Coding Scheme) to balance
between robustness and spectral efficiency; similar trends
have been observed for other configurations. We consider a
mixed traffic flow scenario with latency requirements derived
from 3GPP specifications for enhanced V2X scenarios [13].
We consider that 50%, 25% and 25% of the packets must be
transmitted within a maximum latency of 50, 20 and 10 ms,
respectively; other scenarios with mixed traffic flows and
different latency requirements have also been evaluated, and
similar trends have been observed.

Fig. 5 presents the percentage of transmissions that meet
their latency requirements using the proposed PCG scheme
and the reference (Ref.) scheme. The performance is shown
for the different configurations evaluated for each scheme
following Table II. Fig. 5 shows that PCG significantly
increases the percentage of packets that meet their latency
requirements compared to the reference scheme. PCG can
reach satisfaction levels higher than 87% with all the
evaluated configurations, while the reference scheme cannot
surpass a 64% satisfaction level regardless of the
configuration used. Fig. 5 also reports the performance
achieved with a predictive configured grant scheme that does
not consider prediction inaccuracies and pre-allocates
resources based only on the predicted packet size 5;. In this
case, only about 64% of packets meet their latency
requirement (similar to the reference scheme) compared with
a satisfaction level of 92.4% and 98.9% with the PCG when
Asi=a; (C1) and As=Pyy(AE) (C5) respectively. These results
strongly highlight the importance of accounting for prediction
inaccuracies in the design of predictive scheduling schemes
capable of supporting deterministic communications!.

! We should note that the transmissions that PCG cannot satisfy correspond
to packets with a size larger than §; + As;. In this case, the number of

allocated RBs is insufficient for transmitting these packets in time to meet
their latency requirement.



Fig. 5 shows that the proposed PCG increases its
performance as the prediction inaccuracy As; is set equal to
higher percentile values of the prediction’s absolute error.
Similarly, the reference scheme increases its satisfaction level
when it allocates RBs based on the highest percentiles of the
packet size. However, these improvements come at the
expense of pre-allocating a larger number of RBs per packet
than actually needed, thus reducing resource efficiency. This
is illustrated in Fig. 6, where Fig. 6.a represents the percentage
of RBs allocated for the transmission of packets and Fig. 6.b
represents the percentage of pre-allocated RBs that are
actually unutilized. Fig. 6.a shows that the percentage of
allocated RBs increases for PCG when As; is set equal to
higher percentile values of the prediction’s absolute error, and
increases for the reference scheme when allocating RBs based
on the highest size percentiles. However, PCG pre-allocates
in general a lowest number of RBs than the reference scheme
while achieving higher satisfaction levels (Fig. 5). In addition,
PCG results in a significantly lower percentage of non-
utilized RBs compared to the reference scheme, which
highlights its highest resource efficiency.

Following the URLLC principles in 5G, the reference
scheme focuses on minimizing the transmission latency. On
the other hand, PCG has been designed to support
deterministic communications in beyond 5G networks, and
hence prioritizes maximizing the number of transmissions
that meet their latency requirements. Fig. 7 plots the
cumulative distribution function (CDF) of the latency
experienced by packets with 10, 20, and 50 ms latency
requirements, respectively. The figure shows that packets
with the most stringent latency requirement (10 ms)
experience the lowest latency values when using the PCG
scheme. On the other hand, PCG slightly increases the latency
of packets with more relaxed latency constraints. This is
particularly the case for packets with a 20 ms requirement as
these packets often compete for the same RBs as the packets
that require 10 ms latency. PCG intentionally delays the
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latency requirements with PCG and the reference scheme.

transmission of packets with more relaxed latency
requirements, while still meeting their latency deadline, to
ensure that packets with tighter deadlines can be transmitted
in time. In contrast, a scheduler that seeks minimizing the
transmission latency (Ref.) does not leverage varying latency
requirements in mixed traffic flows to increase the percentage
of satisfied transmissions, and the latency experienced
increases uniformly up to the maximum allowed latency.

VI. CONCLUSIONS

This study presents a novel predictive configured grant
scheduling scheme designed to support deterministic
communications in beyond 5G networks. The proposed
predictive CG scheduling scheme pre-allocates resources
based on traffic predictions and prediction inaccuracies with
the objective to maximize the percentage of packets
transmitted within their bounded latency requirements. The
evaluation shows that the proposed predictive CG scheme
significantly increases the percentage of satisfied
transmissions compared to a 5G CG scheduler while pre-
allocating less resources and using them more efficiently. Our
evaluation has also demonstrated the importance of
accounting for prediction inaccuracies in the scheduling
process to improve the ability to meet bounded latency
requirements and hence support deterministic services in
beyond 5G networks.
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